PuSH - Publikationsserver des Helmholtz Zentrums München

Büttner, M. ; Miao, Z.* ; Wolf, F.A. ; Teichmann, S.A.* ; Theis, F.J.

A test metric for assessing single-cell RNA-seq batch correction.

Nat. Methods 16, 43-49 (2019)
Postprint Forschungsdaten DOI PMC
Open Access Green
Single-cell transcriptomics is a versatile tool for exploring heterogeneous cell populations, but as with all genomics experiments, batch effects can hamper data integration and interpretation. The success of batch-effect correction is often evaluated by visual inspection of low-dimensional embeddings, which are inherently imprecise. Here we present a user-friendly, robust and sensitive k-nearest-neighbor batch-effect test (kBET; https://github.com/theislab/kBET) for quantification of batch effects. We used kBET to assess commonly used batch-regression and normalization approaches, and to quantify the extent to which they remove batch effects while preserving biological variability. We also demonstrate the application of kBET to data from peripheral blood mononuclear cells (PBMCs) from healthy donors to distinguish cell-type-specific inter-individual variability from changes in relative proportions of cell populations. This has important implications for future data-integration efforts, central to projects such as the Human Cell Atlas.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
28.467
5.343
90
110
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Gene-expression; Sequencing Data; Normalization; Programs; Package; Fate
Sprache
Veröffentlichungsjahr 2019
Prepublished im Jahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 1548-7091
e-ISSN 1548-7105
Zeitschrift Nature Methods
Quellenangaben Band: 16, Heft: 1, Seiten: 43-49 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort New York, NY
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 85058910761
PubMed ID 30573817
Erfassungsdatum 2018-12-21