PuSH - Publikationsserver des Helmholtz Zentrums München

Hross, S. ; Theis, F.J. ; Sixt, M.* ; Hasenauer, J.

Mechanistic description of spatial processes using integrative modelling of noise-corrupted imaging data.

J. R. Soc. Interface 15:20180600 (2018)
Verlagsversion Postprint DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Spatial patterns are ubiquitous on the subcellular, cellular and tissue level, and can be studied using imaging techniques such as light and fluorescence microscopy. Imaging data provide quantitative information about biological systems; however, mechanisms causing spatial patterning often remain elusive. In recent years, spatio-temporal mathematical modelling has helped to overcome this problem. Yet, outliers and structured noise limit modelling of whole imaging data, and models often consider spatial summary statistics. Here, we introduce an integrated data-driven modelling approach that can cope with measurement artefacts and whole imaging data. Our approach combines mechanistic models of the biological processes with robust statistical models of the measurement process. The parameters of the integrated model are calibrated using a maximum-likelihood approach. We used this integrated modelling approach to study in vivo gradients of the chemokine (C-C motif) ligand 21 (CCL21). CCL21 gradients guide dendritic cells and are important in the adaptive immune response. Using artificial data, we verified that the integrated modelling approach provides reliable parameter estimates in the presence of measurement noise and that bias and variance of these estimates are reduced compared to conventional approaches. The application to experimental data allowed the parametrization and subsequent refinement of the model using additional mechanisms. Among other results, model-based hypothesis testing predicted lymphatic vessel-dependent concentration of heparan sulfate, the binding partner of CCL21. The selected model provided an accurate description of the experimental data and was partially validated using published data. Our findings demonstrate that integrated statistical modelling of whole imaging data is computationally feasible and can provide novel biological insights.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
3.355
1.454
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Ccl21 ; Gradient Formation ; Imaging Data ; Mathematical Modelling ; Measurement Noise ; Parameter Estimation
Sprache englisch
Veröffentlichungsjahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 1742-5689
e-ISSN 1742-5662
Quellenangaben Band: 15, Heft: 149, Seiten: , Artikelnummer: 20180600 Supplement: ,
Verlag Royal Society of London
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-553800-001
Scopus ID 85059807350
PubMed ID 30958238
PubMed ID PMC6303801
Erfassungsdatum 2019-01-21