Sosnin, S.* ; Karlov, D.* ; Tetko, I.V. ; Fedorov, M.V.*
Comparative study of multitask toxicity modeling on a broad chemical space.
J. Chem. Inf. Model. 59, 1062-1072 (2019)
Acute toxicity is one of the most challenging properties to predict purely with computational methods due to its direct relationship to biological interactions. Moreover, toxicity can be represented by different end points: it can be measured for different species using different types of administration, etc., and it is questionable if the knowledge transfer between end points is possible. We performed a comparative study of prediction multitask toxicity for a broad chemical space using different descriptors and modeling algorithms and applied multitask learning for a large toxicity data set extracted from the Registry of Toxic Effects of Chemical Substances (RTECS). We demonstrated that multitask modeling provides significant improvement over single-output models and other machine learning methods. Our research reveals that multitask learning can be very useful to improve the quality of acute toxicity modeling and raises a discussion about the usage of multitask approaches for regulation purposes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Neural-networks; Web Server; Qsar; Prediction; Classification; Descriptors
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2019
Prepublished im Jahr
2018
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
0021-9576
e-ISSN
1520-5142
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 59,
Heft: 3,
Seiten: 1062-1072
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Chemical Society (ACS)
Verlagsort
1155 16th St, Nw, Washington, Dc 20036 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503000-001
Förderungen
Copyright
Erfassungsdatum
2019-01-30