Veturi, Y.* ; de Los Campos, G.* ; Yi, N.* ; Huang, W.* ; Vazquez, A.I.* ; Kühnel, B.
Modeling heterogeneity in the genetic architecture of ethnically diverse groups using random effect interaction models.
Genetics 211, 1395–1407 (2019)
In humans, most genome-wide association studies have been conducted using data from Caucasians and many of the reported findings have not replicated in other populations. This lack of replication may be due to statistical issues (small sample sizes or confounding) or perhaps more fundamentally to differences in the genetic architecture of traits between ethnically diverse subpopulations. What aspects of the genetic architecture of traits vary between subpopulations and how can this be quantified? We consider studying effect heterogeneity using Bayesian random effect interaction models. The proposed methodology can be applied using shrinkage and variable selection methods, and produces useful information about effect heterogeneity in the form of whole-genome summaries (e.g., the proportions of variance of a complex trait explained by a set of SNPs and the average correlation of effects) as well as SNP-specific attributes. Using simulations, we show that the proposed methodology yields (nearly) unbiased estimates when the sample size is not too small relative to the number of SNPs used. Subsequently, we used the methodology for the analyses of four complex human traits (standing height, high-density lipoprotein, low-density lipoprotein, and serum urate levels) in European-Americans (EAs) and African-Americans (AAs). The estimated correlations of effects between the two subpopulations were well below unity for all the traits, ranging from 0.73 to 0.50. The extent of effect heterogeneity varied between traits and SNP sets. Height showed less differences in SNP effects between AAs and EAs whereas HDL, a trait highly influenced by lifestyle, exhibited a greater extent of effect heterogeneity. For all the traits, we observed substantial variability in effect heterogeneity across SNPs, suggesting that effect heterogeneity varies between regions of the genome.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Bayesian Spike Slab ; Effect Heterogeneity ; Gwas ; Population Structure ; Random Effect Interactions; Genome-wide Association; Population-structure; African-americans; Blood-pressure; Regression; Susceptibility; Replication; Prediction; Traits; Risk
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2019
Prepublished im Jahr
HGF-Berichtsjahr
2019
ISSN (print) / ISBN
0016-6731
e-ISSN
0016-6731
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 211,
Heft: 3,
Seiten: 1395–1407
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Genetics Society of America
Verlagsort
9650 Rockville Ave, Bethesda, Md 20814 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504091-001
Förderungen
Copyright
Erfassungsdatum
2019-03-15