PuSH - Publikationsserver des Helmholtz Zentrums München

Sippel, K. ; Moser, J. ; Schleger, F. ; Preissl, H. ; Rosenstiel, W.* ; Spüler, M.*

Fully Automated R-peak Detection Algorithm (FLORA) for fetal magnetoencephalographic data.

Comput. Meth. Programs Biomed. 173, 35-41 (2019)
Postprint DOI PMC
Open Access Green
BACKGROUND AND OBJECTIVE: Fetal magnetoencephalography (fMEG) is a method for recording fetal brain signals, fetal and maternal heart activity simultaneously. The identification of the R-peaks of the heartbeats forms the basis for later heart rate (HR) and heart rate variability (HRV) analysis. The current procedure for the evaluation of fetal magnetocardiograms (fMCG) is either semi-automated evaluation using template matching (SATM) or Hilbert transformation algorithm (HTA). However, none of the methods available at present works reliable for all datasets. METHODS: Our aim was to develop a unitary, responsive and fully automated R-peak detection algorithm (FLORA) that combines and enhances both of the methods used up to now. RESULTS: The evaluation of all methods on 55 datasets verifies that FLORA outperforms both of these methods as well as a combination of the two, which applies in particular to data of fetuses at earlier gestational age. CONCLUSION: The combined analysis shows that FLORA is capable of providing good, stable and reproducible results without manual intervention.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.424
1.705
1
3
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Magnetocardiography ; Peak Detection
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 0169-2607
e-ISSN 1872-7565
Quellenangaben Band: 173, Heft: , Seiten: 35-41 Artikelnummer: , Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed
POF Topic(s) 90000 - German Center for Diabetes Research
Forschungsfeld(er) Helmholtz Diabetes Center
PSP-Element(e) G-502400-001
Scopus ID 85062885649
PubMed ID 31046994
Erfassungsdatum 2019-03-25