PuSH - Publikationsserver des Helmholtz Zentrums München

Bressin, A.* ; Schulte-Sasse, R.* ; Figini, D.* ; Urdaneta, E.C.* ; Beckmann, B.M.* ; Marsico, A.

TriPepSVM: De novo prediction of RNA-binding proteins based on short amino acid motifs.

Nucleic Acids Res. 47, 4406-4417 (2019)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
In recent years, hundreds of novel RNA-binding proteins (RBPs) have been identified, leading to the discovery of novel RNA-binding domains. Furthermore, unstructured or disordered low-complexity regions of RBPs have been identified to play an important role in interactions with nucleic acids. However, these advances in understanding RBPs are limited mainly to eukaryotic species and we only have limited tools to faithfully predict RNA-binders in bacteria. Here, we describe a support vector machine-based method, called TriPepSVM, for the prediction of RNA-binding proteins. TriPepSVM applies string kernels to directly handle protein sequences using tri-peptide frequencies. Testing the method in human and bacteria, we find that several RBP-enriched tri-peptides occur more often in structurally disordered regions of RBPs. TriPepSVM outperforms existing applications, which consider classical structural features of RNA-binding or homology, in the task of RBP prediction in both human and bacteria. Finally, we predict 66 novel RBPs in Salmonella Typhimurium and validate the bacterial proteins ClpX, DnaJ and UbiG to associate with RNA in vivo.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
11.147
3.156
19
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 0305-1048
e-ISSN 1362-4962
Quellenangaben Band: 47, Heft: 9, Seiten: 4406-4417 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 85066056313
PubMed ID 30923827
Erfassungsdatum 2019-05-13