Focused library generator: Case of Mdmx inhibitors.
J. Comput.-Aided Mol. Des. 34, 769–782 (2020)
We present a Focused Library Generator that is able to create from scratch new molecules with desired properties. After training the Generator on the ChEMBL database, transfer learning was used to switch the generator to producing new Mdmx inhibitors that are a promising class of anticancer drugs. Lilly medicinal chemistry filters, molecular docking, and a QSAR IC50 model were used to refine the output of the Generator. Pharmacophore screening and molecular dynamics (MD) simulations were then used to further select putative ligands. Finally, we identified five promising hits with equivalent or even better predicted binding free energies and IC50 values than known Mdmx inhibitors. The source code of the project is available on https://github.com/bigchem/online-chem.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Lstm ; Mdmx Inhibitors ; Molecular Dynamics ; Pharmacophore ; Structure Generation ; Transfer Learning; P53; Database; Protein; Identification; Discovery; Optimization; Methodology; Molecules; Chemistry; Accuracy
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
2019
HGF-Berichtsjahr
2019
ISSN (print) / ISBN
0920-654X
e-ISSN
1573-4951
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 34,
Heft: ,
Seiten: 769–782
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
Van Godewijckstraat 30, 3311 Gz Dordrecht, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503000-001
Förderungen
Copyright
Erfassungsdatum
2019-11-05