PuSH - Publikationsserver des Helmholtz Zentrums München

Villaverde, A.F.* ; Raimundez-Alvarez, E. ; Hasenauer, J. ; Banga, J.R.*

A comparison of methods for quantifying prediction uncertainty in systems biology.

IFAC PapersOnline 52, 45-51 (2019)
Verlagsversion DOI
Open Access Gold
The parameters of dynamical models of biological processes always possess some degree of uncertainty. This parameter uncertainty translates into an uncertainty of model predictions. The trajectories of unmeasured state variables are examples of such predictions. Quantifying the uncertainty associated with a given prediction is an important problem for model developers and users. However, the nonlinearity and complexity of most dynamical models renders it nontrivial. Here, we evaluate three state-of-the-art approaches for prediction uncertainty quantification using two models of different sizes and computational complexities. We discuss the trade-offs between applicability and statistical interpretability of the different methods, and provide guidelines for their application.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
0.000
0.552
6
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Computational Methods ; Dynamic Models ; Nonlinear Systems ; Observability ; Prediction Error Methods ; State Estimation ; Uncertainty
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 2405-8963
e-ISSN 1474-6670
Zeitschrift IFAC-PapersOnLine
Quellenangaben Band: 52, Heft: 26, Seiten: 45-51 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Frankfurt ; München [u.a.]
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-553800-001
Scopus ID 85081101272
Erfassungsdatum 2020-05-12