Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development.
Eur. Heart J. 41, 3949–3959 (2020)
Verlagsversion
Forschungsdaten
DOI
PMC
AIMS: Imbalances of iron metabolism have been linked to the development of atherosclerosis. However, subjects with hereditary haemochromatosis have a lower prevalence of cardiovascular disease. The aim of our study was to understand the underlying mechanisms by combining data from genome-wide association study analyses in humans, CRISPR/Cas9 genome editing, and loss-of-function studies in mice. METHODS AND RESULTS: Our analysis of the Global Lipids Genetics Consortium (GLGC) dataset revealed that single nucleotide polymorphisms (SNPs) in the haemochromatosis gene HFE associate with reduced low-density lipoprotein cholesterol (LDL-C) in human plasma. The LDL-C lowering effect could be phenocopied in dyslipidaemic ApoE-/- mice lacking Hfe, which translated into reduced atherosclerosis burden. Mechanistically, we identified HFE as a negative regulator of LDL receptor expression in hepatocytes. Moreover, we uncovered liver-resident Kupffer cells (KCs) as central players in cholesterol homeostasis as they were found to acquire and transfer LDL-derived cholesterol to hepatocytes in an Abca1-dependent fashion, which is controlled by iron availability. CONCLUSION: Our results disentangle novel regulatory interactions between iron metabolism, KC biology and cholesterol homeostasis which are promising targets for treating dyslipidaemia but also provide a mechanistic explanation for reduced cardiovascular morbidity in subjects with haemochromatosis.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Abca1 ; Atherosclerosis ; Haemochromatosis ; Kupffer Cells ; Ldl Receptor; Low-density-lipoprotein; Ester Transfer Protein; Iron Overload; Hereditary Hemochromatosis; Hdl Metabolism; Risk; Inflammation; Macrophages; Efflux; Blood
ISSN (print) / ISBN
0195-668X
e-ISSN
1522-9645
Zeitschrift
European Heart Journal
Quellenangaben
Band: 41,
Heft: 40,
Seiten: 3949–3959
Verlag
Oxford University Press
Verlagsort
Great Clarendon St, Oxford Ox2 6dp, England
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Förderungen
Swiss National Science Foundation
COMET project VASCage Tyrol of the Austrian Research Promotion Agency FFG
Medical University Innsbruck for young scientists MUI-START
Christian Doppler Society
Doctoral program HOROS
FWF
Austrian Science Fund (FWF)
COMET project VASCage Tyrol of the Austrian Research Promotion Agency FFG
Medical University Innsbruck for young scientists MUI-START
Christian Doppler Society
Doctoral program HOROS
FWF
Austrian Science Fund (FWF)