Chatzinakos, C.* ; Georgiadis, F.* ; Lee, D.* ; Cai, N. ; Vladimirov, V.I.* ; Docherty, A.* ; Webb, B.T.* ; Riley, B.P.* ; Flint, J.* ; Kendler, K.S.* ; Daskalakis, N.P.* ; Bacanu, S.A.*
TWAS pathway method greatly enhances the number of leads for uncovering the molecular underpinnings of psychiatric disorders.
Am. J. Med. Genet. B 183, 454-463 (2020)
Genetic signal detection in genome-wide association studies (GWAS) is enhanced by pooling small signals from multiple Single Nucleotide Polymorphism (SNP), for example, across genes and pathways. Because genes are believed to influence traits via gene expression, it is of interest to combine information from expression Quantitative Trait Loci (eQTLs) in a gene or genes in the same pathway. Such methods, widely referred to as transcriptomic wide association studies (TWAS), already exist for gene analysis. Due to the possibility of eliminating most of the confounding effects of linkage disequilibrium (LD) from TWAS gene statistics, pathway TWAS methods would be very useful in uncovering the true molecular basis of psychiatric disorders. However, such methods are not yet available for arbitrarily large pathways/gene sets. This is possibly due to the quadratic (as a function of the number of SNPs) computational burden for computing LD across large chromosomal regions. To overcome this obstacle, we propose JEPEGMIX2-P, a novel TWAS pathway method that (a) has a linear computational burden, (b) uses a large and diverse reference panel (33 K subjects), (c) is competitive (adjusts for background enrichment in gene TWAS statistics), and (d) is applicable as-is to ethnically mixed-cohorts. To underline its potential for increasing the power to uncover genetic signals over the commonly used nontranscriptomics methods, for example,MAGMA, we applied JEPEGMIX2-P to summary statistics of most large meta-analyses from Psychiatric Genetics Consortium (PGC). While our work is just the very first step toward clinical translation of psychiatric disorders, PGC anorexia results suggest a possible avenue for treatment.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Gene Expression ; Genetics ; Gwas ; Pathway ; Twas; Genome-wide Association; Enrichment Analysis; Direct Imputation; Statistics; Expression; Risk
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
1552-4841
e-ISSN
0148-7299
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 183,
Heft: 8,
Seiten: 454-463
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
Hoboken, NJ
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz Pioneer Campus (HPC)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Pioneer Campus
PSP-Element(e)
G-510000-001
Förderungen
National Institute of Mental Health
National Center for Advancing Translational Sciences
Copyright
Erfassungsdatum
2020-11-09