PuSH - Publikationsserver des Helmholtz Zentrums München

Sieberts, S.K.* ; Perumal, T.M.* ; Carrasquillo, M.M.* ; Allen, M.* ; Reddy, J.S.* ; Hoffman, G.E.* ; Dang, K.K.* ; Calley, J.* ; Ebert, P.J.* ; Eddy, J.* ; Wang, X.* ; Greenwood, A.K.* ; Mostafavi, S.* ; Omberg, L.* ; Peters, M.A.* ; Logsdon, B.A.* ; de Jager, P.L.* ; Ertekin-Taner, N.* ; Mangravite, L.M.* ; The AMP-AD Consortium (Arnold, M.)

Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions.

Sci. Data 7:340 (2020)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
5.541
2.887
22
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 2052-4463
e-ISSN 2052-4463
Zeitschrift Scientific Data
Quellenangaben Band: 7, Heft: 1, Seiten: , Artikelnummer: 340 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503891-001
Scopus ID 85092511647
PubMed ID 33046718
Erfassungsdatum 2020-11-24