PuSH - Publikationsserver des Helmholtz Zentrums München

Böger, C.A.* ; Heid, I.M.

Chronic kidney disease: Novel insights from genome-wide association studies.

Kidney Blood Press. Res. 34, 225-234 (2011)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Chronic kidney disease (CKD) is common, affecting about 10% of the general population, and causing significant morbidity and mortality. Apart from the risk conferred by traditional cardiovascular risk factors, there is a strong genetic component. The method of a genome-wide association study (GWAS) is a powerful hypothesis-free approach to unravel this component by association analyses of CKD with several million genetic variants distributed across the genome. Since the publication of the first GWAS in 2005, this method has led to the discovery of novel loci for numerous human common diseases and phenotypes. Here, we review the recent successes of meta-analyses of GWAS on renal phenotypes. UMOD, SHROOM3, STC1, LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2/SH2B3, DACH1, UBE2Q2, and SLC7A9 were uncovered as loci associated with estimated glomerular filtration rate (eGFR) and CKD, and CUBN as a locus for albuminuria in cross-sectional data of general population studies. However, less than 1.5% of the total variance of eGFR and albuminuria is explained by the identified variants, and the relative risk for CKD is modified by at most 20% per locus. In African Americans, much of the risk for end-stage nondiabetic kidney disease is explained by common variants in the MYH9/APOL1 locus, and in individuals of European descent, variants in HLA-DQA1 and PLA(2)R1 implicate most of the risk for idiopathic membranous nephropathy. In contrast, genetic findings in the analysis of diabetic nephropathy are inconsistent. Uncovering variants explaining more of the genetically determined variability of kidney function is hampered by the multifactorial nature of CKD and different mechanisms involved in progressive CKD stages, and by the challenges in elucidating the role of low-frequency variants. Meta-analyses with larger sample sizes and analyses of longitudinal renal phenotypes using higher-resolution genotyping data are required to uncover novel loci associated with severe renal phenotypes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.500
0.745
35
63
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Genome-wide association study; Chronic kidney disease; End-stage renal disease; Diabetic nephropathy; Membranous nephropathy; IgA nephropathy; Albuminuria; Glomerular filtration rate; Progression of chronic kidney disease; Kidney function decline
Sprache englisch
Veröffentlichungsjahr 2011
HGF-Berichtsjahr 2011
ISSN (print) / ISBN 1420-4096
e-ISSN 1423-0143
Quellenangaben Band: 34, Heft: 4, Seiten: 225-234 Artikelnummer: , Supplement: ,
Verlag Karger
Verlagsort Basel, Switzerland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504100-001
PubMed ID 21691125
Scopus ID 79959510825
Erfassungsdatum 2011-09-08