PuSH - Publikationsserver des Helmholtz Zentrums München

The Pelczynski and Dunford-Pettis properties of the space of uniform convergent fourier series with respect to orthogonal polynomials.

Colloq. Math. 164, 1-9 (2021)
Postprint DOI
Open Access Green
The Banach space U(mu) of uniformly convergent Fourier series with respect to an orthonormal polynomial sequence with orthogonalization measure mu supported on a compact set S subset of R is studied. For certain measures mu, involving Bernstein-Szego polynomials and certain Jacobi polynomials, it is proven that U(mu) has the Pelczyriski property, and also that U(mu) and U(mu)* have the Dunford-Pettis property.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Orthogonal Polynomials ; Fourier Series ; Uniform Convergence ; Pelczynski Property ; Dunford-pettis Property ; Bernstein-szego Polynomials ; Jacobi Polynomials
ISSN (print) / ISBN 0010-1354
e-ISSN 1730-6302
Quellenangaben Band: 164, Heft: 1, Seiten: 1-9 Artikelnummer: , Supplement: ,
Verlag Institute of Mathematics, Polish Academy of Sciences
Verlagsort Krakowskie Przedmiescie 7 Po Box 1001, 00-068 Warsaw, Poland
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed