The secondary sex ratio in Italy over the past eighty years (1940 to 2019) and potential impact of radiological contamination after atmospheric nuclear testing and after Chernobyl: Temporal change-point analysis using Markov Chain Monte Carlo.
In Europe, the male to female ratio at birth (secondary sex ratio: SSR; sex odds: SO) is 1.04-1.06, is influenced by many factors and is declining in industrialized countries. This study was carried out to identify possible impacts of fallout by atomic bomb tests or by the Chernobyl event on SSR in Italy. Italy is a country without commercial nuclear power generation for the last four decades and thus nearly free of radiological confounders. Counts of annual male and female live births in Italy are provided by the World Health Organization (WHO) and by the Italian Istituto Nazionale di Statistica (ISTAT). This study included 57.7 million live births (1940-2019) with overall SSR 1.05829. The Italian SSR trend was modelled with linear and non-linear logistic regression. Trend changes, i.e., periods with level shifts were estimated with Markov Chain Monte Carlo (MCMC). Two distinct idealized level shifts were identified superimposed on a uniform secular downward trend. The first one is seen towards the end of the 1960s with a jump sex odds ratio (SOR) 1.00681, p < 0.0001. The second one occurred in 1987 with SOR 1.00474, p < 0.0001. In each of the 3 periods separated by the two jumps, SSR uniformly decreased with trend SOR per 100 years of 0.98549, p < 0.0001. In conclusion, the secular trend in the Italian SSR showed two marked level shifts, at the end of the 1960s and from 1987 onward. These follow the release of radioactivity by atmospheric atomic bomb tests during the 1960s and by Chernobyl in 1986 and corroborate the hypothesis that ionizing radiation increases SSR.