Weberpals, J.* ; Becker, T.* ; Davies, J.* ; Schmich, F.* ; Rüttinger, D.* ; Theis, F.J. ; Bauer-Mehren, A.*
     
 
    
        
Deep learning-based propensity scores for confounding control in comparative effectiveness research: A large-scale, real-world data study.
    
    
        
    
    
        
        Epidemiology 32, 378-388 (2021)
    
    
    
		
		
			
				BACKGROUND: Due to the non-randomized nature of real-world data, prognostic factors need to be balanced, which is often done by propensity scores (PS). This study aimed to investigate whether autoencoders, which are unsupervised deep learning architectures, might be leveraged to compute PS. METHODS: We selected patient-level data of 128,368 first-line treated cancer patients from the Flatiron Health EHR-derived de-identified database. We trained an autoencoder architecture to learn a lower-dimensional patient representation, which we used to compute PS. To compare the performance of an autoencoder-based PS with established methods, we performed a simulation study. We assessed the balancing and adjustment performance using standardized mean differences (SMD), root-mean-square-errors (RMSE), percent bias and confidence interval (CI) coverage. To illustrate the application of the autoencoder-based PS, we emulated the PRONOUNCE trial by applying the trial's protocol elements within an observational database setting, comparing two chemotherapy regimens. RESULTS: All methods but the manual variable selection approach led to well-balanced cohorts with average SMDs <0.1. LASSO yielded on average the lowest deviation of resulting estimates (RMSE 0.0205) followed by the autoencoder approach (RMSE 0.0248). Altering the hyperparameter setup in sensitivity analysis, the autoencoder approach led to similar results as LASSO (RMSE 0.0203 and 0.0205, respectively). In the case study, all methods provided a similar conclusion with point estimates clustered around the null (e.g. HRautoencoder 1.01 [95% CI 0.80-1.27] vs. HRPRONOUNCE 1.07 [0.83-1.36]). INTERPRETATION: Autoencoder-based PS computation was a feasible approach to control for confounding but did not perform better than some established approaches like LASSO.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Autoencoder ; Causal Inference ; Comparative Effectiveness Research ; Deep Learning ; Electronic Health Records ; Machine Learning ; Propensity Scores
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2021
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2021
    
 
    
    
        ISSN (print) / ISBN
        1044-3983
    
 
    
        e-ISSN
        1531-5487
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 32,  
	    Heft: 3,  
	    Seiten: 378-388 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Lippincott Williams & Wilkins
        
 
        
            Verlagsort
            Two Commerce Sq, 2001 Market St, Philadelphia, Pa 19103 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-503800-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2021-05-11