Durán, C.* ; Ciucci, S.* ; Palladini, A. ; Ijaz, U.Z.* ; Zippo, A.G.* ; Sterbini, F.P.* ; Masucci, L.* ; Cammarota, G.* ; Ianiro, G.* ; Spuul, P.* ; Schroeder, M.* ; Grill, S.W.* ; Parsons, B.N.* ; Pritchard, D.M.* ; Posteraro, B.* ; Sanguinetti, M.C.* ; Gasbarrini, G.* ; Gasbarrini, A.* ; Cannistraci, C.V.*
Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome.
Nat. Commun. 12:1926 (2021)
The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance. Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the commensal bacteria re-organize, due to these perturbations of the gastric environment, are in early phase and rely principally on linear techniques for multivariate analysis. Here we disclose the importance of complementing linear dimensionality reduction techniques with nonlinear ones to unveil hidden patterns that remain unseen by linear embedding. Then, we prove the advantages to complete multivariate pattern analysis with differential network analysis, to reveal mechanisms of bacterial network re-organizations which emerge from perturbations induced by a medical treatment (PPIs) or an infectious state (H. pylori). Finally, we show how to build bacteria-metabolite multilayer networks that can deepen our understanding of the metabolite pathways significantly associated to the perturbed microbial communities.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 12,
Heft: 1,
Seiten: ,
Artikelnummer: 1926
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Pancreatic Islet Research (IPI)
POF Topic(s)
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Helmholtz Diabetes Center
PSP-Element(e)
G-502600-002
Förderungen
Research Grants-Doctoral Programs in Germany (DAAD)
Estonian Research Council
Dresden International Graduate School for Biomedicine and Bioengineering (DIGS-BB) - Deutsche Forschungsgemeinschaft (DFG)
TUD Forschungspool
Copyright
Erfassungsdatum
2021-05-20