PuSH - Publikationsserver des Helmholtz Zentrums München

Durán, C.* ; Ciucci, S.* ; Palladini, A. ; Ijaz, U.Z.* ; Zippo, A.G.* ; Sterbini, F.P.* ; Masucci, L.* ; Cammarota, G.* ; Ianiro, G.* ; Spuul, P.* ; Schroeder, M.* ; Grill, S.W.* ; Parsons, B.N.* ; Pritchard, D.M.* ; Posteraro, B.* ; Sanguinetti, M.C.* ; Gasbarrini, G.* ; Gasbarrini, A.* ; Cannistraci, C.V.*

Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome.

Nat. Commun. 12:1926 (2021)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The stomach is inhabited by diverse microbial communities, co-existing in a dynamic balance. Long-term use of drugs such as proton pump inhibitors (PPIs), or bacterial infection such as Helicobacter pylori, cause significant microbial alterations. Yet, studies revealing how the commensal bacteria re-organize, due to these perturbations of the gastric environment, are in early phase and rely principally on linear techniques for multivariate analysis. Here we disclose the importance of complementing linear dimensionality reduction techniques with nonlinear ones to unveil hidden patterns that remain unseen by linear embedding. Then, we prove the advantages to complete multivariate pattern analysis with differential network analysis, to reveal mechanisms of bacterial network re-organizations which emerge from perturbations induced by a medical treatment (PPIs) or an infectious state (H. pylori). Finally, we show how to build bacteria-metabolite multilayer networks that can deepen our understanding of the metabolite pathways significantly associated to the perturbed microbial communities.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
14.919
3.055
3
7
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 12, Heft: 1, Seiten: , Artikelnummer: 1926 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Pancreatic Islet Research (IPI)
POF Topic(s) 90000 - German Center for Diabetes Research
Forschungsfeld(er) Helmholtz Diabetes Center
PSP-Element(e) G-502600-002
Förderungen Research Grants-Doctoral Programs in Germany (DAAD)
Estonian Research Council
Dresden International Graduate School for Biomedicine and Bioengineering (DIGS-BB) - Deutsche Forschungsgemeinschaft (DFG)
TUD Forschungspool
Scopus ID 85103532911
PubMed ID 33771992
Erfassungsdatum 2021-05-20