PuSH - Publikationsserver des Helmholtz Zentrums München

Dershwitz, P.* ; Bandow, N.L.* ; Yang, J.* ; Semrau, J.D.* ; McEllistrem, M.T.* ; Heinze, R.A.* ; Fonseca, M.* ; Ledesma, J.C.* ; Jennett, J.R.* ; DiSpirito, A.M.* ; Athwal, N.S.* ; Hargrove, M.S.* ; Bobik, T.A.* ; Zischka, H. ; DiSpirito, A.A.*

Oxygen generation via water splitting by a novel biogenic metal ion binding compound.

Appl. Environ. Microbiol. 87:e00286-21 (2021)
Verlagsversion Postprint DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Methanobactins (MBs) are small (<1,300 Da) post-translationally modified copper-binding peptides and represent the extracellular component of a copper acquisition system in some methanotrophs. Interestingly, MBs can bind a range of metal ions, with some reduced after binding, e.g., Cu2+ reduced to Cu+ Other metal ions, however, are bound but not reduced, e.g., K+ The source of electrons for selective metal ion reduction has been speculated to be water but never empirically shown. Here, using H218O, we show that when MB from Methylocystis sp strain SB2 (MB-SB2) and Methylosinus trichosporium OB3b (MB-OB3) were incubated in the presence of either Au3+, Cu2, and Ag+, 18,18O2 and free protons were released. No 18,18O2 production was observed either in presence of MB-SB2 or MB-OB3b alone, gold alone, copper alone, silver alone or when K+ or Mo2+ was incubated with MB-SB2.In contrast to MB-OB3b, MB-SB2 binds Fe3+ with an N2S2 coordination and will also reduce Fe3+ to Fe2+ Iron reduction was also found to be coupled to oxidation of 2H2O and generation of O2 MB-SB2 will also couple Hg2+, Ni2+ and Co2+ reduction to the oxidation of 2H2O and generation of O2, but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce these metal ions.To determine if the O2 generated during metal ion reduction by MB could be coupled to methane oxidation, 13CH4 oxidation by Methylosinus trichosporium OB3b was monitored under anoxic conditions. The results demonstrate O2 generation from metal ion reduction by MB-OB3b can support methane oxidation.IMPORTANCEThe discovery that MB will couple the oxidation of H2O to metal ion reduction and the release of O2 suggests that methanotrophs expressing MB may be able to maintain their activity in hypoxic/anoxic conditions through "self-generation" of dioxygen required for the initial oxidation of methane to methanol. Such an ability may be an important factor in enabling methanotrophs to not only colonize the oxic-anoxic interface where methane concentrations are highest, but also tolerate significant temporal fluctuations of this interface. Given that genomic surveys often show evidence of aerobic methanotrophs within anoxic zones, the ability to express MB (and thereby generate dioxygen) may be an important parameter in facilitating their ability to remove methane, a potent greenhouse gas, before it enters the atmosphere.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
4.792
0.000
4
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Methanobactin ; Chalkophore ; Water Oxidation ; Methanotroph ; Aerobic Methane Oxidation ; Gold Nanoparticle; Methylococcus-capsulatus-bath; Methylosinus-trichosporium Ob3b; Soluble Methane Monooxygenase; Formate Dehydrogenase; Thermodynamic Properties; Crystal-structure; Methanobactin; Copper; Reductase; Methanotrophs
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 0099-2240
e-ISSN 1098-5336
Quellenangaben Band: 87, Heft: 14, Seiten: , Artikelnummer: e00286-21 Supplement: ,
Verlag American Society for Microbiology (ASM)
Verlagsort 1752 N St Nw, Washington, Dc 20036-2904 Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505200-003
Förderungen ISU Bailey Research and Career Development
Materials Science and Engineering Center at UW-Eau Claire
National Science Foundation
U.S. Department of Energy Office of Science
PubMed ID 33962982
Erfassungsdatum 2021-06-10