Schaefer, J.* ; Milling, M.* ; Schuller, B.W.* ; Bauer, B.* ; Brunner, J.O.* ; Traidl-Hoffmann, C. ; Damialis, A.*
     
 
    
        
Towards automatic airborne pollen monitoring: From commercial devices to operational by mitigating class-imbalance in a deep learning approach.
    
    
        
    
    
        
        Sci. Total Environ. 796:148932 (2021)
    
    
    
		
		
			
				Allergic diseases have been the epidemic of the century among chronic diseases. Particularly for pollen allergies, and in the context of climate change, as airborne pollen seasons have been shifting earlier and abundances have been becoming higher, pollen monitoring plays an important role in generating high-risk allergy alerts. However, this task requires labour-intensive and time-consuming manual classification via optical microscopy. Even new-generation, automatic, monitoring devices require manual pollen labelling to increase accuracy and to advance to genuinely operational devices. Deep Learning-based models have the potential to increase the accuracy of automated pollen monitoring systems. In the current research, transfer learning-based convolutional neural networks were employed to classify pollen grains from microscopic images. Given a high imbalance in the dataset, we incorporated class weighted loss, focal loss and weight vector normalisation for class balancing as well as data augmentation and weight penalties for regularisation. Airborne pollen has been routinely recorded by a Bio-Aerosol Analyzer (BAA500, Hund GmbH) located in Augsburg, Germany. Here we utilised a database referring to manually classified airborne pollen images of the whole pollen diversity throughout an annual pollen season. By using the cropped pollen images collected by this device, we achieved an unweighted average F1 score of 93.8% across 15 classes and an unweighted average F1 score of 75.9% across 31 classes. The majority of taxa (9 of 15), being also the most abundant and allergenic, showed a recall of at least 95%, reaching up to a remarkable 100% in pollen from Taxus and Urticaceae. The recent introduction of novel pollen monitoring devices worldwide has pointed to the necessity for real-time, automatic measurements of airborne pollen and fungal spores. Thus, we may improve everyday clinical practice and achieve the most efficient prophylaxis of allergic patients.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Aerobiology ; Automatic Classification ; Convolutional Neural Network ; Machine Learning ; Pollen; Identification
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2021
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2021
    
 
    
    
        ISSN (print) / ISBN
        0048-9697
    
 
    
        e-ISSN
        1879-1026
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 796,  
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: 148932 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Elsevier
        
 
        
            Verlagsort
            Radarweg 29, 1043 Nx Amsterdam, Netherlands
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Environmental Medicine (IEM)
    
 
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Allergy	
    
 
    
        PSP-Element(e)
        G-503400-001
    
 
    
        Förderungen
        EU-COST Action ADOPT (New approaches in detection of pathogens and aeroallergens) (EU Framework Program Horizon 2020)
Helmholtz Climate Initiative (HI-CAM), Mitigation and Adaptation
Christine Kuhne-Center for Allergy Research and Education (CK-CARE)
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2021-08-04