Chen, F.* ; Wang, C.* ; Yue, L.* ; Zhu, L.* ; Tang, J.* ; Yu, X.* ; Cao, X.* ; Schröder, P. ; Wang, Z.*
Cell walls are remodeled to alleviate nY2O3 cytotoxicity by elaborate regulation of de Novo synthesis and vesicular transport.
ACS Nano 15, 13166–13177 (2021)
Yttrium oxide nanoparticles (nY2O3), one of the broadly used rare earth nanoparticles, can interact with plants and possibly cause plant health and environmental impacts, but the plant defense response particularly at the nanoparticle-cell interface is largely unknown. To elucidate this, Bright Yellow 2 (BY-2) tobacco (Nicotiana tabacum L.) suspension-cultured cells were exposed to 50 mg L-1 nY2O3 (30 nm) for 12 h. Although 42.2% of the nY2O3 remained outside of protoplasts, nY2O3 could still traverse the cell wall and was partially deposited inside the vacuole. In addition to growth inhibition, morphological and compositional changes in cell walls occurred. Together with a locally thickened (7-13-fold) cell wall, increased content (up to 58%) of pectin and reduction in (up to 29%) hemicellulose were observed. Transcriptome analysis revealed that genes involved in cell wall metabolism and remodeling were highly regulated in response to nY2O3 stress. Expression of genes for pectin synthesis and degradation was up- and down-regulated by 31-78% and 13-42%, respectively, and genes for xyloglucan and pectin modifications were up- and down-regulated by 82% and 81-92%, respectively. Interestingly, vesicle trafficking seemed to be activated, enabling the repair and defense against nY2O3 disturbance. Our findings indicate that, although nY2O3 generated toxicity on BY-2 cells, it is very likely that during the recovery process cell wall remodeling was initiated to gain resistance to nY2O3 stress, demonstrating the plant's cellular regulatory machinery regarding repair and adaptation to nanoparticles like nY2O3.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Cell Wall Thickening ; Nano-y2o3 ; Pectin ; Remodeling ; Vesicle-like Transport; Oxide Nanoparticles; Cuo Nanoparticles; Polysaccharides; Stress; Biosynthesis; Integrity; Stringtie; Cellulose; Plants; Hisat
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
1936-0851
e-ISSN
1936-086X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 15,
Heft: 8,
Seiten: 13166–13177
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Chemical Society (ACS)
Verlagsort
1155 16th St, Nw, Washington, Dc 20036 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504700-003
Förderungen
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Copyright
Erfassungsdatum
2021-09-13