Liu, X. ; Hadiatullah, H.* ; Zhang, X.* ; Hill, L.D.* ; White, A.H.A.* ; Schnelle-Kreis, J. ; Bendl, J. ; Jakobi, G. ; Schloter-Hai, B. ; Zimmermann, R.
Analysis of mobile monitoring data from the microAeth® MA200 for measuring changes in black carbon on the roadside in Augsburg.
Atmos. Meas. Tech. 14, 5139-5151 (2021)
The portable microAeth® MA200 (MA200) is widely applied for measuring black carbon in human exposure profiling and mobile air quality monitoring. Due to it being relatively new on the market, the field lacks a refined assessment of the instrument's performance under various settings and data post-processing approaches. This study assessed the mobile real-time performance of the MA200 to determine a suitable noise reduction algorithm in an urban area, Augsburg, Germany. Noise reduction and negative value mitigation were explored via different data post-processing methods (i.e., local polynomial regression (LPR), optimized noise reduction averaging (ONA), and centred moving average (CMA)) under common sampling interval times (i.e., 5, 10, and 30ĝ€¯s). After noise reduction, the treated data were evaluated and compared by (1) the amount of useful information attributed to retention of microenvironmental characteristics, (2) the relative number of negative values remaining, (3) the reduction and retention of peak samples, and (4) the amount of useful signal retained after correction for local background conditions. Our results identify CMA as a useful tool for isolating the central trends of raw black carbon concentration data in real time while reducing nonsensical negative values and the occurrence and magnitudes of peak samples that affect visual assessment of the data without substantially affecting bias. Correction for local background concentrations improved the CMA treatment by bringing nuanced microenvironmental changes into view. This analysis employs a number of different post-processing methods for black carbon data, providing comparative insights for researchers looking for black carbon data smoothing approaches, specifically in a mobile monitoring framework and data collected using the microAeth® series of Aethalometer.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Air-quality; Ultrafine Particle; Personal Exposure; Regression; Stationary; Fine
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
1867-1381
e-ISSN
1867-8548
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 14,
Heft: 7,
Seiten: 5139-5151
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
European Geosciences Union (EGU) ; Copernicus
Verlagsort
Bahnhofsallee 1e, Gottingen, 37081, Germany
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504500-001
Förderungen
Germany Federal Ministry of Transport and Digital Infrastructure (BMVI) as part of SmartAQnet
National Natural Science Foundation of China
Support Project of High-Level Teachers in Beijing Municipal Universities in the Period of 13th Five-Year Plan
National Key Research and Development Program of China
Copyright
Erfassungsdatum
2021-09-17