PuSH - Publikationsserver des Helmholtz Zentrums München

März, J.* ; Kurlbaum, M.* ; Roche-Lancaster, O.* ; Deutschbein, T.* ; Peitzsch, M.* ; Prehn, C. ; Weismann, D.* ; Robledo, M.* ; Adamski, J. ; Fassnacht, M.* ; Kunz, M.* ; Kroiss, M.*

Plasma metabolome profiling for the diagnosis of catecholamine producing tumors.

Front. Endocrin. 12:722656 (2021)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Context: Pheochromocytomas and paragangliomas (PPGL) cause catecholamine excess leading to a characteristic clinical phenotype. Intra-individual changes at metabolome level have been described after surgical PPGL removal. The value of metabolomics for the diagnosis of PPGL has not been studied yet. Objective: Evaluation of quantitative metabolomics as a diagnostic tool for PPGL. Design: Targeted metabolomics by liquid chromatography-tandem mass spectrometry of plasma specimens and statistical modeling using ML-based feature selection approaches in a clinically well characterized cohort study. Patients: Prospectively enrolled patients (n=36, 17 female) from the Prospective Monoamine-producing Tumor Study (PMT) with hormonally active PPGL and 36 matched controls in whom PPGL was rigorously excluded. Results: Among 188 measured metabolites, only without considering false discovery rate, 4 exhibited statistically significant differences between patients with PPGL and controls (histidine p=0.004, threonine p=0.008, lyso PC a C28:0 p=0.044, sum of hexoses p=0.018). Weak, but significant correlations for histidine, threonine and lyso PC a C28:0 with total urine catecholamine levels were identified. Only the sum of hexoses (reflecting glucose) showed significant correlations with plasma metanephrines.By using ML-based feature selection approaches, we identified diagnostic signatures which all exhibited low accuracy and sensitivity. The best predictive value (sensitivity 87.5%, accuracy 67.3%) was obtained by using Gradient Boosting Machine Modelling. Conclusions: The diabetogenic effect of catecholamine excess dominates the plasma metabolome in PPGL patients. While curative surgery for PPGL led to normalization of catecholamine-induced alterations of metabolomics in individual patients, plasma metabolomics are not useful for diagnostic purposes, most likely due to inter-individual variability.
Impact Factor
Scopus SNIP
Altmetric
5.555
1.389
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Adrenal ; Catecholamines ; Feature Selection ; Machine Learning ; Mass Spectronomy ; Paraganglioma ; Pheochromocytoma ; Targeted Metabolomics
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 1664-2392
e-ISSN 1664-2392
Quellenangaben Band: 12, Heft: , Seiten: , Artikelnummer: 722656 Supplement: ,
Verlag Frontiers
Verlagsort Lausanne
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
30505 - New Technologies for Biomedical Discoveries
30201 - Metabolic Health
Forschungsfeld(er) Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e) G-505700-001
A-630710-001
G-500600-001
Förderungen Deutsche Forschungsgemeinschaft
Schickedanz Kinderkrebsstiftung
Scopus ID 85115348393
PubMed ID 34557163
Erfassungsdatum 2021-11-12