PuSH - Publikationsserver des Helmholtz Zentrums München

Syga, S.* ; David-Rus, D.* ; Schälte, Y. ; Hatzikirou, H.* ; Deutsch, A.*

Inferring the effect of interventions on COVID-19 transmission networks.

Sci. Rep. 11:21913 (2021)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Countries around the world implement nonpharmaceutical interventions (NPIs) to mitigate the spread of COVID-19. Design of efficient NPIs requires identification of the structure of the disease transmission network. We here identify the key parameters of the COVID-19 transmission network for time periods before, during, and after the application of strict NPIs for the first wave of COVID-19 infections in Germany combining Bayesian parameter inference with an agent-based epidemiological model. We assume a Watts–Strogatz small-world network which allows to distinguish contacts within clustered cliques and unclustered, random contacts in the population, which have been shown to be crucial in sustaining the epidemic. In contrast to other works, which use coarse-grained network structures from anonymized data, like cell phone data, we consider the contacts of individual agents explicitly. We show that NPIs drastically reduced random contacts in the transmission network, increased network clustering, and resulted in a previously unappreciated transition from an exponential to a constant regime of new cases. In this regime, the disease spreads like a wave with a finite wave speed that depends on the number of contacts in a nonlinear fashion, which we can predict by mean field theory.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
4.379
1.377
3
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Small-world; Sars-cov-2; Complex; Infection; Model
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Zeitschrift Scientific Reports
Quellenangaben Band: 11, Heft: 1, Seiten: , Artikelnummer: 21913 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-553800-001
Förderungen
German Federal Ministry of Education and Research (FitMultiCell)
Bundesministeriums fur Bildung, und Forschung (BMBF)
Volkswagen Foundation within the Life? program
European Social Fund (ESF)
Scopus ID 85118653497
PubMed ID 34754025
Erfassungsdatum 2021-12-17