PuSH - Publikationsserver des Helmholtz Zentrums München

Li, J.* ; Wang, C.* ; Chen, T.* ; Lu, T.* ; Li, S.* ; Sun, B.* ; Gao, F.* ; Ntziachristos, V.

Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data.

Optica 9, 32-41 (2022)
Verlagsversion Forschungsdaten DOI
Open Access Gold
Creative Commons Lizenzvertrag
Deep learning (DL) shows promise for quantitating anatomical features and functional parameters of tissues in quantitative optoacoustic tomography (QOAT), but its application to deep tissue is hindered by a lack of ground truth data. We propose DL-based "QOAT-Net,"which functions without labeled experimental data: A dual-path convolutional network estimates absorption coefficients after training with data-label pairs generated via unsupervised "simulation-to-experiment"data translation. In simulations, phantoms, and ex vivo and in vivo tissues, QOAT-Net affords quantitative absorption images with high spatial resolution. This approach makes DL-based QOAT and other imaging applications feasible in the absence of ground truth data.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
10.644
3.333
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Photoacoustic Image-reconstruction; Optical-properties; Small-animals; Distributions; Absorption; Scattering; Media; Model
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2334-2536
Zeitschrift Optica
Quellenangaben Band: 9, Heft: 1, Seiten: 32-41 Artikelnummer: , Supplement: ,
Verlag Optical Society of America (OSA)
Verlagsort Washington, DC
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505500-001
Förderungen European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme
Key Fund of Shenzhen Natural Science Foundation
Natural Science Foundation of Tianjin Municipal Science and Technology Commission
National Natural Science Foundation of China
Scopus ID 85122850048
Erfassungsdatum 2022-02-08