Li, J.* ; Wang, C.* ; Chen, T.* ; Lu, T.* ; Li, S.* ; Sun, B.* ; Gao, F.* ; Ntziachristos, V.
Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data.
Optica 9, 32-41 (2022)
Deep learning (DL) shows promise for quantitating anatomical features and functional parameters of tissues in quantitative optoacoustic tomography (QOAT), but its application to deep tissue is hindered by a lack of ground truth data. We propose DL-based "QOAT-Net,"which functions without labeled experimental data: A dual-path convolutional network estimates absorption coefficients after training with data-label pairs generated via unsupervised "simulation-to-experiment"data translation. In simulations, phantoms, and ex vivo and in vivo tissues, QOAT-Net affords quantitative absorption images with high spatial resolution. This approach makes DL-based QOAT and other imaging applications feasible in the absence of ground truth data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Photoacoustic Image-reconstruction; Optical-properties; Small-animals; Distributions; Absorption; Scattering; Media; Model
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
2334-2536
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 9,
Heft: 1,
Seiten: 32-41
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Optical Society of America (OSA)
Verlagsort
Washington, DC
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505500-001
Förderungen
European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme
Key Fund of Shenzhen Natural Science Foundation
Natural Science Foundation of Tianjin Municipal Science and Technology Commission
National Natural Science Foundation of China
Copyright
Erfassungsdatum
2022-02-08