Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks.
PLoS Comput. Biol. 19:e1010783 (2023)
Dynamical models in the form of systems of ordinary differential equations have become a standard tool in systems biology. Many parameters of such models are usually unknown and have to be inferred from experimental data. Gradient-based optimization has proven to be effective for parameter estimation. However, computing gradients becomes increasingly costly for larger models, which are required for capturing the complex interactions of multiple biochemical pathways. Adjoint sensitivity analysis has been pivotal for working with such large models, but methods tailored for steady-state data are currently not available. We propose a new adjoint method for computing gradients, which is applicable if the experimental data include steady-state measurements. The method is based on a reformulation of the backward integration problem to a system of linear algebraic equations. The evaluation of the proposed method using real-world problems shows a speedup of total simulation time by a factor of up to 4.4. Our results demonstrate that the proposed approach can achieve a substantial improvement in computation time, in particular for large-scale models, where computational efficiency is critical.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Methylation; Algorithm; Patterns
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1553-734X
e-ISSN
1553-7358
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 19,
Heft: 1,
Seiten: ,
Artikelnummer: e1010783
Supplement: ,
Reihe
Verlag
Public Library of Science (PLoS)
Verlagsort
1160 Battery Street, Ste 100, San Francisco, Ca 94111 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-553800-001
G-503800-001
Förderungen
National Cancer Institute
Human Frontier Science Program
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
German Federal Ministry of Education and Research (BMBF) within the e:Med funding scheme (junior research alliance PeriNAA)
European Union's Horizon 2020 research and innovation program (CanPathPro)
Copyright
Erfassungsdatum
2023-03-10