Gonzalez-Alonso, M. ; Boldeanu, M.* ; Koritnik, T.* ; Gonçalves, J.* ; Belzner, L.* ; Stemmler, T.* ; Gebauer, R.* ; Grewling, Ł.* ; Tummon, F.* ; Maya-Manzano, J.M. ; Ariño, A.H.* ; Schmidt-Weber, C.B. ; Buters, J.T.M.
Alternaria spore exposure in Bavaria, Germany, measured using artificial intelligence algorithms in a network of BAA500 automatic pollen monitors.
Sci. Total Environ. 861:160180 (2023)
Although Alternaria spores are well-known allergenic fungal spores, automatic bioaerosol recognition systems have not been trained to recognize these particles until now. Here we report the development of a new algorithm able to classify Alternaria spores with BAA500 automatic bioaerosol monitors. The best validation score was obtained when the model was trained on both data from the original dataset and artificially generated images, with a validation unweighted mean Intersection over Union (IoU), also called Jaccard Index, of 0.95. Data augmentation techniques were applied to the training set. While some particles were not recognized (false negatives), false positives were few. The results correlated well with manual counts (mean of four Hirst-type traps), with R2 = 0.78. Counts from BAA500 were 1.92 times lower than with Hirst-type traps. The algorithm was then used to re-analyze the historical automatic pollen monitoring network (ePIN) dataset (2018–2022), which lacked Alternaria spore counts. Re-analysis of past data showed that Alternaria spore exposure in Bavaria was very variable, with the highest counts in the North (Marktheidenfeld, 154 m a.s.l.), and the lowest values close to the mountains in the South (Garmisch-Partenkirchen, 735 m a.s.l.). This approach shows that in our network future algorithms can be run on past datasets. Over time, the use of different algorithms could lead to misinterpretations as stemming from climate change or other phenological causes. Our approach enables consistent, homogeneous treatment of long-term series, thus preventing variability in particle counts owing to changes in the algorithms.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Allergy ; Alternaria ; Automatic Monitors ; Classification ; Convolutional Neural Networks ; Fungal Spores ; Time Series ; U-net; Respiratory Allergy; Air-pollution; Immunotherapy; Asthma; Cladosporium
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
2022
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
0048-9697
e-ISSN
1879-1026
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 861,
Heft: ,
Seiten: ,
Artikelnummer: 160180
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Allergy
PSP-Element(e)
G-505400-001
Förderungen
COST Action
Bayerisches Landesamt fur Gesundheit und Lebensmittelsicherheit (LGL)
EUMETNET AutoPollen Programme
Copyright
Erfassungsdatum
2023-01-12