PuSH - Publikationsserver des Helmholtz Zentrums München

Correlation-guided Network Integration (CoNI), an R package for integrating numerical omics data that allows multiform graph representations to study molecular interaction networks.

Bioinfo. Adv. 2:vbac042 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
SUMMARY: Today's immense growth in complex biological data demands effective and flexible tools for integration, analysis and extraction of valuable insights. Here, we present CoNI, a practical R package for the unsupervised integration of numerical omics datasets. Our tool is based on partial correlations to identify putative confounding variables for a set of paired dependent variables. CoNI combines two omics datasets in an integrated, complex hypergraph-like network, represented as a weighted undirected graph, a bipartite graph, or a hypergraph structure. These network representations form a basis for multiple further analyses, such as identifying priority candidates of biological importance or comparing network structures dependent on different conditions. AVAILABILITY AND IMPLEMENTATION: The R package CoNI is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/CoNI/) and GitLab (https://gitlab.com/computational-discovery-research/coni). It is distributed under the GNU General Public License (version 3). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2635-0041
e-ISSN 2635-0041
Quellenangaben Band: 2, Heft: 1, Seiten: , Artikelnummer: vbac042 Supplement: ,
Verlag Oxford University Press
Begutachtungsstatus Peer reviewed
POF Topic(s) 30201 - Metabolic Health
Forschungsfeld(er) Helmholtz Diabetes Center
PSP-Element(e) G-502297-001
G-502200-001
Scopus ID 85148566043
PubMed ID 36699352
Erfassungsdatum 2023-02-01