Lotfollahi, M. ; Klimovskaia Susmelj, A.* ; De Donno, C. ; Hetzel, L. ; Ji, Y. ; Ibarra Del Rio, I.A. ; Srivatsan, S.R.* ; Naghipourfar, M.* ; Daza, R.M.* ; Martin, B.* ; Shendure, J.* ; McFaline-Figueroa, J.L.* ; Boyeau, P.* ; Wolf, F.A. ; Yakubova, N.* ; Günnemann, S.* ; Trapnell, C.* ; Lopez-Paz, D.* ; Theis, F.J.
     
 
    
        
Predicting cellular responses to complex perturbations in high-throughput screens.
    
    
        
    
    
        
        Mol. Syst. Biol. 19:e11517 (2023)
    
    
    
		
		
			
				Recent advances in multiplexed single-cell transcriptomics experiments facilitate the high-throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep-learning approaches for single-cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single-cell level for unseen dosages, cell types, time points, and species. Using newly generated single-cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single-cell Perturb-seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single-cell level and thus accelerate therapeutic applications using single-cell technologies.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Generative Modeling ; High-throughput Screening ; Machine Learning ; Perturbation Prediction ; Single-cell Transcriptomics; Seq; Cancer; Mechanisms; Therapy
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2023
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2023
    
 
    
    
        ISSN (print) / ISBN
        1744-4292
    
 
    
        e-ISSN
        1744-4292
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 19,  
	    Heft: 6,  
	    Seiten: ,  
	    Artikelnummer: e11517 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            EMBO Press
        
 
        
            Verlagsort
            111 River St, Hoboken 07030-5774, Nj Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-503800-001
    
 
    
        Förderungen
        Projekt DEAL
European Union
Helmholtz Association's Initiative and Networking Fund through Helmholtz AI
Chan Zuckerberg Initiative DAF (advised fund of Silicon Valley Community Foundation)
Helmholtz Association
BMBF
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-10-06