PuSH - Publikationsserver des Helmholtz Zentrums München

Wagner, N.* ; Çelik, M.H.* ; Hölzlwimmer, F.R.* ; Mertes, C.* ; Prokisch, H. ; Yépez, V.A.* ; Gagneur, J.

Aberrant splicing prediction across human tissues.

Nat. Genet. 55, 861-870 (2023)
Postprint DOI PMC
Open Access Green
Aberrant splicing is a major cause of genetic disorders but its direct detection in transcriptomes is limited to clinically accessible tissues such as skin or body fluids. While DNA-based machine learning models can prioritize rare variants for affecting splicing, their performance in predicting tissue-specific aberrant splicing remains unassessed. Here we generated an aberrant splicing benchmark dataset, spanning over 8.8 million rare variants in 49 human tissues from the Genotype-Tissue Expression (GTEx) dataset. At 20% recall, state-of-the-art DNA-based models achieve maximum 12% precision. By mapping and quantifying tissue-specific splice site usage transcriptome-wide and modeling isoform competition, we increased precision by threefold at the same recall. Integrating RNA-sequencing data of clinically accessible tissues into our model, AbSplice, brought precision to 60%. These results, replicated in two independent cohorts, substantially contribute to noncoding loss-of-function variant identification and to genetic diagnostics design and analytics.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
30.800
0.000
4
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Sequence
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1061-4036
e-ISSN 1546-1718
Zeitschrift Nature Genetics
Quellenangaben Band: 55, Heft: 5, Seiten: 861-870 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort New York, NY
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen NINDS
NIMH
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
NIDA
NHLBI
NHGRI
NCI
Common Fund of the Office of the Director of the National Institutes of Health
Helmholtz Association
EJP RD project GENOMIT
ERA PerMed project PerMiM
German Network for Mitochondrial Disorders
German Bundesministerium fur Bildung und Forschung (BMBF)
Scopus ID 85158035630
PubMed ID 37142848
Erfassungsdatum 2023-10-06