Built to last? Reproducibility and reusability of deep learning algorithms in computational pathology.
Mod. Pathol. 37:100350 (2024)
Recent progress in computational pathology has been driven by deep learning. While code and data availability are essential to reproduce findings from preceding publications, ensuring a deep learning model's reusability is more challenging. For that, the codebase should be well-documented and easy to integrate into existing workflows and models should be robust toward noise and generalizable toward data from different sources. Strikingly, only a few computational pathology algorithms have been reused by other researchers so far, let alone employed in a clinical setting. To assess the current state of reproducibility and reusability of computational pathology algorithms, we evaluated peer-reviewed articles available in PubMed, published between January 2019 and March 2021, in 5 use cases: stain normalization; tissue type segmentation; evaluation of cell-level features; genetic alteration prediction; and inference of grading, staging, and prognostic information. We compiled criteria for data and code availability and statistical result analysis and assessed them in 160 publications. We found that only one-quarter (41 of 160 publications) made code publicly available. Among these 41 studies, three-quarters (30 of 41) analyzed their results statistically, half of them (20 of 41) released their trained model weights, and approximately a third (16 of 41) used an independent cohort for evaluation. Our review is intended for both pathologists interested in deep learning and researchers applying algorithms to computational pathology challenges. We provide a detailed overview of publications with published code in the field, list reusable data handling tools, and provide criteria for reproducibility and reusability.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Artificial Intelligence ; Computational Pathology ; Deep Learning ; Histology/histopathology ; Reproducibility ; Reusability; Artificial-intelligence; Histopathology Images; Cancer; Prediction; Model; Stain; Segmentation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0893-3952
e-ISSN
1530-0285
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 37,
Heft: 1,
Seiten: ,
Artikelnummer: 100350
Supplement: ,
Reihe
Verlag
United States and Canadian Academy of Pathology ; Nature Publishing Group
Verlagsort
Ste 800, 230 Park Ave, New York, Ny 10169 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
Pioneer Campus
PSP-Element(e)
G-530006-001
G-540007-001
G-510008-001
Förderungen
European Research Council under the European Union
Joachim Herz Foundation
Helmholtz Association
Copyright
Erfassungsdatum
2023-11-28