PuSH - Publikationsserver des Helmholtz Zentrums München

Grexa, I.* ; Iván, Z.Z.* ; Migh, E.* ; Kovács, F.* ; Bolck, H.A.* ; Zheng, X.* ; Mund, A.* ; Moshkov, N.* ; Miczán, V.* ; Koos, K.* ; Horvath, P.

SuperCUT, an unsupervised multimodal image registration with deep learning for biomedical microscopy.

Brief. Bioinform. 25:bbae029 (2024)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Numerous imaging techniques are available for observing and interrogating biological samples, and several of them can be used consecutively to enable correlative analysis of different image modalities with varying resolutions and the inclusion of structural or molecular information. Achieving accurate registration of multimodal images is essential for the correlative analysis process, but it remains a challenging computer vision task with no widely accepted solution. Moreover, supervised registration methods require annotated data produced by experts, which is limited. To address this challenge, we propose a general unsupervised pipeline for multimodal image registration using deep learning. We provide a comprehensive evaluation of the proposed pipeline versus the current state-of-the-art image registration and style transfer methods on four types of biological problems utilizing different microscopy modalities. We found that style transfer of modality domains paired with fully unsupervised training leads to comparable image registration accuracy to supervised methods and, most importantly, does not require human intervention.
Impact Factor
Scopus SNIP
Altmetric
6.800
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Correlative Microscopy ; Deep Learning ; Microscopy ; Unsupervised Multimodal Image Registration; Pathology
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 1467-5463
e-ISSN 1477-4054
Quellenangaben Band: 25, Heft: 2, Seiten: , Artikelnummer: bbae029 Supplement: ,
Verlag Oxford University Press
Verlagsort Great Clarendon St, Oxford Ox2 6dp, England
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540009-001
Förderungen New National Excellence Program of the Ministry for Culture and Innovation
National Research, Development, and Innovation Fund
PubMed ID 38483256
Erfassungsdatum 2024-07-29