möglich sobald bei der ZB eingereicht worden ist.
On solvability of some systems of Fredholm integro-differential equations with mixed diffusion in a square.
Eur. J. Math. 10, DOI: 10.1007/s40879-024-00729-1 (2024)
We establish the existence in the sense of sequences of solutions for a certain system of integro-differential equations in a square in two dimensions with periodic boundary conditions involving the normal diffusion in one direction and the superdiffusion in the other direction in a constrained subspace of H2 for the vector functions via the fixed point technique. The system of elliptic equations contains a second order differential operator, which satisfies the Fredholm property. It is demonstrated that, under certain reasonable technical conditions, the convergence in the appropriate function spaces of the integral kernels implies the existence and convergence in Hc2(Ω,RN) of the solutions. We generalize our results derived in Efendiev and Vougalter (J Dyn Differ Equ, 2022. https://doi.org/10.1007/s10884-022-10199-2) for an analogous system studied in the whole R2 which involved non-Fredholm operators. Let us emphasize that the study of systems is more complicated than the scalar case.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
35p30 ; 47f05 ; 47g20 ; Fredholm Operators ; Integro-differential Systems ; Mixed Diffusion ; Solvability Conditions; Properness Properties; Stationary Solutions; Traveling-waves; Existence
ISSN (print) / ISBN
2199-675X
e-ISSN
2199-6768
Zeitschrift
European Journal of Mathematics
Quellenangaben
Band: 10,
Heft: 1
Verlag
Springer
Verlagsort
Gewerbestrasse 11, Cham, Ch-6330, Switzerland
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
Förderungen
natural sciences and engineering research council of canada