PuSH - Publikationsserver des Helmholtz Zentrums München

Filbir, F. ; Hielscher, R.* ; Jahn, T.* ; Ullrich, T.*

Marcinkiewicz–Zygmund inequalities for scattered and random data on the q-sphere.

Appl. Comput. Harmon. Anal. 71:101651 (2024)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the q-dimensional sphere Sq, and investigate how well continuous Lp-norms of polynomials f of maximum degree n on the sphere Sq can be discretized by positively weighted Lp-sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points ξ1,…,ξN on Sq, the dimension q, and the degree n of the polynomials.
Impact Factor
Scopus SNIP
Altmetric
2.600
1.640
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Coupon Collector Problem ; Discretization ; Marcinkiewicz–zygmund Inequality ; Random Matrix ; Riesz–thorin Interpolation Theorem ; Scattered Data Approximation ; Spherical Harmonics; Approximation; Frames
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 1063-5203
e-ISSN 1096-603X
Quellenangaben Band: 71, Heft: , Seiten: , Artikelnummer: 101651 Supplement: ,
Verlag Academic Press
Verlagsort San Diego, Calif. [u.a.]
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505595-001
Förderungen German Science Foundation (DFG)
Helmholtz Imaging Platform (HIP)
Scopus ID 85186713367
Erfassungsdatum 2024-05-08