Filbir, F. ; Hielscher, R.* ; Jahn, T.* ; Ullrich, T.*
Marcinkiewicz–Zygmund inequalities for scattered and random data on the q-sphere.
Appl. Comput. Harmon. Anal. 71:101651 (2024)
The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the q-dimensional sphere Sq, and investigate how well continuous Lp-norms of polynomials f of maximum degree n on the sphere Sq can be discretized by positively weighted Lp-sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points ξ1,…,ξN on Sq, the dimension q, and the degree n of the polynomials.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Coupon Collector Problem ; Discretization ; Marcinkiewicz–zygmund Inequality ; Random Matrix ; Riesz–thorin Interpolation Theorem ; Scattered Data Approximation ; Spherical Harmonics; Approximation; Frames
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1063-5203
e-ISSN
1096-603X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 71,
Heft: ,
Seiten: ,
Artikelnummer: 101651
Supplement: ,
Reihe
Verlag
Academic Press
Verlagsort
San Diego, Calif. [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505595-001
Förderungen
German Science Foundation (DFG)
Helmholtz Imaging Platform (HIP)
Copyright
Erfassungsdatum
2024-05-08