PuSH - Publikationsserver des Helmholtz Zentrums München

Gindra, R. ; Zheng, Y.* ; Green, E.J.* ; Reid, M.E.* ; Mazzilli, S.A.* ; Merrick, D.T.* ; Burks, E.J.* ; Kolachalama, V.B.* ; Beane, J.E.*

Graph perceiver network for lung tumor and bronchial premalignant lesion stratification from histopathology.

Am. J. Pathol. 194, 1285-1293 (2024)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Bronchial premalignant lesions (PMLs) precede the development of invasive lung squamous carcinoma (LUSC), posing a significant challenge in distinguishing those likely to advance to LUSC from those that might regress without intervention. In this context, we present a novel computational approach, the Graph Perceiver Network (GRAPE-Net), leveraging hematoxylin and eosin (H&E) stained whole slide images (WSIs) to stratify endobronchial biopsies of PMLs across a spectrum from normal to tumor lung tissues. GRAPE-Net outperforms existing frameworks in classification accuracy predicting LUSC, lung adenocarcinoma (LUAD), and non-tumor (normal) lung tissue on The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets containing lung resection tissues while efficiently generating pathologist-aligned, class-specific heatmaps. The network was further tested using endobronchial biopsies from two data cohorts, containing normal to carcinoma in situ histology, and it demonstrated a unique capability to differentiate carcinoma in situ lung squamous PMLs based on their progression status to invasive carcinoma. The network may have utility in stratifying PMLs for chemoprevention trials or more aggressive follow-up.
Impact Factor
Scopus SNIP
Altmetric
4.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Lung Cancer ; Deep Learning ; Digital Pathology ; Premalignant Lesions
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 0002-9440
e-ISSN 1525-2191
Quellenangaben Band: 194, Heft: 7, Seiten: 1285-1293 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Ste 800, 230 Park Ave, New York, Ny 10169 Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540007-001
Förderungen Karen Toffler Charitable Trust
Johnson &Johnson Enterprise Innovation, Inc.
American Heart Association
NIH
Scopus ID 85196007854
PubMed ID 38588853
Erfassungsdatum 2024-05-24