Gindra, R. ; Zheng, Y.* ; Green, E.J.* ; Reid, M.E.* ; Mazzilli, S.A.* ; Merrick, D.T.* ; Burks, E.J.* ; Kolachalama, V.B.* ; Beane, J.E.*
Graph perceiver network for lung tumor and bronchial premalignant lesion stratification from histopathology.
Am. J. Pathol. 194, 1285-1293 (2024)
Bronchial premalignant lesions (PMLs) precede the development of invasive lung squamous carcinoma (LUSC), posing a significant challenge in distinguishing those likely to advance to LUSC from those that might regress without intervention. In this context, we present a novel computational approach, the Graph Perceiver Network (GRAPE-Net), leveraging hematoxylin and eosin (H&E) stained whole slide images (WSIs) to stratify endobronchial biopsies of PMLs across a spectrum from normal to tumor lung tissues. GRAPE-Net outperforms existing frameworks in classification accuracy predicting LUSC, lung adenocarcinoma (LUAD), and non-tumor (normal) lung tissue on The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets containing lung resection tissues while efficiently generating pathologist-aligned, class-specific heatmaps. The network was further tested using endobronchial biopsies from two data cohorts, containing normal to carcinoma in situ histology, and it demonstrated a unique capability to differentiate carcinoma in situ lung squamous PMLs based on their progression status to invasive carcinoma. The network may have utility in stratifying PMLs for chemoprevention trials or more aggressive follow-up.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Lung Cancer ; Deep Learning ; Digital Pathology ; Premalignant Lesions
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0002-9440
e-ISSN
1525-2191
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 194,
Heft: 7,
Seiten: 1285-1293
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Ste 800, 230 Park Ave, New York, Ny 10169 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540007-001
Förderungen
Karen Toffler Charitable Trust
Johnson &Johnson Enterprise Innovation, Inc.
American Heart Association
NIH
Copyright
Erfassungsdatum
2024-05-24