Cryo-electron tomography (cryo-ET) allows to visualize the cellular context at macromolecular level. To date, the impossibility of obtaining a reliable ground truth is limiting the application of deep learning-based image processing algorithms in this field. As a consequence, there is a growing demand of realistic synthetic datasets for training deep learning algorithms. In addition, besides assisting the acquisition and interpretation of experimental data, synthetic tomograms are used as reference models for cellular organization analysis from cellular tomograms. Current simulators in cryo-ET focus on reproducing distortions from image acquisition and tomogram reconstruction, however, they can not generate many of the low order features present in cellular tomograms. Here we propose several geometric and organization models to simulate low order cellular structures imaged by cryo-ET. Specifically, clusters of any known cytosolic or membrane bound macromolecules, membranes with different geometries as well as different filamentous structures such as microtubules or actin-like networks. Moreover, we use parametrizable stochastic models to generate a high diversity of geometries and organizations to simulate representative and generalized datasets, including very crowded environments like those observed in native cells. These models have been implemented in a multiplatform open-source Python package, including scripts to generate cryo-tomograms with adjustable sizes and resolutions. In addition, these scripts provide also distortion-free density maps besides the ground truth in different file formats for efficient access and advanced visualization. We show that such a realistic synthetic dataset can be readily used to train generalizable deep learning algorithms.
FörderungenBoehringer Ingelheim Fonds Munich School for Data Science (MUDS) University of Murcia European Union NextGenerationEU/PRTR Ramon y Cajal Program of the Spanish State Research Agency (AEI) through the MICIU/AEI