Peeken, J.C. ; Etzel, L.* ; Tomov, T.* ; Münch, S.* ; Schüttrumpf, L.* ; Shaktour, J.H.* ; Kiechle, J.* ; Knebel, C.* ; Schaub, S.K.* ; Mayr, N.A.* ; Woodruff, H.C.* ; Lambin, P.* ; Gersing, A.S.* ; Bernhardt, D.* ; Nyflot, M.J.* ; Menze, B.* ; Combs, S.E. ; Navarro, F.*
Development and benchmarking of a Deep Learning-based MRI-guided gross tumor segmentation algorithm for Radiomics analyses in extremity soft tissue sarcomas.
Radiother. Oncol. 197:110338 (2024)
BACKGROUND: Volume of interest (VOI) segmentation is a crucial step for Radiomics analyses and radiotherapy (RT) treatment planning. Because it can be time-consuming and subject to inter-observer variability, we developed and tested a Deep Learning-based automatic segmentation (DLBAS) algorithm to reproducibly predict the primary gross tumor as VOI for Radiomics analyses in extremity soft tissue sarcomas (STS). METHODS: A DLBAS algorithm was trained on a cohort of 157 patients and externally tested on an independent cohort of 87 patients using contrast-enhanced MRI. Manual tumor delineations by a radiation oncologist served as ground truths (GTs). A benchmark study with 20 cases from the test cohort compared the DLBAS predictions against manual VOI segmentations of two residents (ERs) and clinical delineations of two radiation oncologists (ROs). The ROs rated DLBAS predictions regarding their direct applicability. RESULTS: The DLBAS achieved a median dice similarity coefficient (DSC) of 0.88 against the GTs in the entire test cohort (interquartile range (IQR): 0.11) and a median DSC of 0.89 (IQR 0.07) and 0.82 (IQR 0.10) in comparison to ERs and ROs, respectively. Radiomics feature stability was high with a median intraclass correlation coefficient of 0.97, 0.95 and 0.94 for GTs, ERs, and ROs, respectively. DLBAS predictions were deemed clinically suitable by the two ROs in 35% and 20% of cases, respectively. CONCLUSION: The results demonstrate that the DLBAS algorithm provides reproducible VOI predictions for radiomics feature extraction. Variability remains regarding direct clinical applicability of predictions for RT treatment planning.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Deep Learning ; Mri ; Radiology ; Radiomics ; Radiotherapy ; Soft Tissue Sarcoma ; Tumor Volume; Radiation-therapy; Preoperative Radiotherapy
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0167-8140
e-ISSN
1879-0887
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 197,
Heft: ,
Seiten: ,
Artikelnummer: 110338
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Elsevier House, Brookvale Plaza, East Park Shannon, Co, Clare, 00000, Ireland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Radiation Sciences
PSP-Element(e)
G-501300-001
Förderungen
Copyright
Erfassungsdatum
2024-07-16