PuSH - Publikationsserver des Helmholtz Zentrums München

Eissa, T.* ; Leonardo, C.* ; Kepesidis, K.V.* ; Fleischmann, F.* ; Linkohr, B. ; Meyer, D.* ; Zoka, V.* ; Huber, M.* ; Voronina, L.* ; Richter, L.* ; Peters, A. ; Zigman, M.*

Plasma infrared fingerprinting with machine learning enables single-measurement multi-phenotype health screening.

Cell Rep. Med. 5:101625 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Infrared spectroscopy is a powerful technique for probing the molecular profiles of complex biofluids, offering a promising avenue for high-throughput in vitro diagnostics. While several studies showcased its potential in detecting health conditions, a large-scale analysis of a naturally heterogeneous potential patient population has not been attempted. Using a population-based cohort, here we analyze 5,184 blood plasma samples from 3,169 individuals using Fourier transform infrared (FTIR) spectroscopy. Applying a multi-task classification to distinguish between dyslipidemia, hypertension, prediabetes, type 2 diabetes, and healthy states, we find that the approach can accurately single out healthy individuals and characterize chronic multimorbid states. We further identify the capacity to forecast the development of metabolic syndrome years in advance of onset. Dataset-independent testing confirms the robustness of infrared signatures against variations in sample handling, storage time, and measurement regimes. This study provides the framework that establishes infrared molecular fingerprinting as an efficient modality for populational health diagnostics.
Impact Factor
Scopus SNIP
Altmetric
11.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Disease Detection ; Infrared Spectroscopy ; In vitro Diagnostics ; Machine Learning ; Metabolic Syndrome ; Molecular Fingerprinting ; Multilabel ; Multimorbidity
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2666-3791
e-ISSN 2666-3791
Zeitschrift Cell Reports Medicine
Quellenangaben Band: 5, Heft: 7, Seiten: , Artikelnummer: 101625 Supplement: ,
Verlag Cell Press
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-006
G-504000-010
G-504090-001
Scopus ID 85198281398
PubMed ID 38944038
Erfassungsdatum 2024-07-00