Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Disease risk predictions with differentiable mendelian randomization.
In: (Research in Computational Molecular Biology). Berlin [u.a.]: Springer, 2024. 385-389 (Lect. Notes Comput. Sc. ; 14758 LNCS)
Predicting future disease onset is crucial in preventive healthcare, yet longitudinal datasets linking early risk factors to subsequent health outcomes are scarce. To address this challenge, we introduce Differentiable Mendelian Randomization (DMR), an extension of the classical Mendelian Randomization framework for disease risk predictions without longitudinal data. To do so, DMR leverages risk factors and genetic profiles from a healthy cohort, along with results from genome-wide association studies (GWAS) of diseases of interest. In this work, we describe the DMR framework and confirm its reliability and effectiveness in simulations and an application to a type 2 diabetes (T2D) cohort.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Konferenzbeitrag
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
Research in Computational Molecular Biology
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 14758 LNCS,
Seiten: 385-389
Verlag
Springer
Verlagsort
Berlin [u.a.]
Nichtpatentliteratur
Publikationen
Institut(e)
Institute of AI for Health (AIH)
Institute of Computational Biology (ICB)
Institute of Computational Biology (ICB)
Förderungen
Free State of Bavaria's Hightech Agenda through the Institute of AI for Health (AIH)
Friedrich-Alexander-Universität Erlangen-Nürnberg
Friedrich-Alexander-Universität Erlangen-Nürnberg