Predicting future disease onset is crucial in preventive healthcare, yet longitudinal datasets linking early risk factors to subsequent health outcomes are scarce. To address this challenge, we introduce Differentiable Mendelian Randomization (DMR), an extension of the classical Mendelian Randomization framework for disease risk predictions without longitudinal data. To do so, DMR leverages risk factors and genetic profiles from a healthy cohort, along with results from genome-wide association studies (GWAS) of diseases of interest. In this work, we describe the DMR framework and confirm its reliability and effectiveness in simulations and an application to a type 2 diabetes (T2D) cohort.