PuSH - Publikationsserver des Helmholtz Zentrums München

Karimi Mamaghan, A.M.* ; Dittadi, A. ; Bauer, S. ; Johansson, K.H.* ; Quinzan, F.*

Diffusion-based causal representation learning.

Entropy 26:556 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Causal reasoning can be considered a cornerstone of intelligent systems. Having access to an underlying causal graph comes with the promise of cause-effect estimation and the identification of efficient and safe interventions. However, learning causal representations remains a major challenge, due to the complexity of many real-world systems. Previous works on causal representation learning have mostly focused on Variational Auto-Encoders (VAEs). These methods only provide representations from a point estimate, and they are less effective at handling high dimensions. To overcome these problems, we propose a Diffusion-based Causal Representation Learning (DCRL) framework which uses diffusion-based representations for causal discovery in the latent space. DCRL provides access to both single-dimensional and infinite-dimensional latent codes, which encode different levels of information. In a first proof of principle, we investigate the use of DCRL for causal representation learning in a weakly supervised setting. We further demonstrate experimentally that this approach performs comparably well in identifying the latent causal structure and causal variables.
Impact Factor
Scopus SNIP
Altmetric
2.100
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Causal Representation Learning ; Diffusion Models ; Diffusion-based Representations ; Weak Supervision; Marginal Structural Models
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
e-ISSN 1099-4300
Zeitschrift Entropy
Quellenangaben Band: 26, Heft: 7, Seiten: , Artikelnummer: 556 Supplement: ,
Verlag MDPI
Verlagsort St Alban-anlage 66, Ch-4052 Basel, Switzerland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530003-001
Förderungen Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation
Scopus ID 85199923243
PubMed ID 39056918
Erfassungsdatum 2024-08-01