PuSH - Publikationsserver des Helmholtz Zentrums München

Müller, P.* ; Meissen, F.* ; Kaissis, G. ; Rueckert, D.*

Weakly supervised object detection in chest X-rays with differentiable ROI proposal networks and soft ROI pooling.

IEEE Trans. Med. Imaging, DOI: 10.1109/TMI.2024.3435015 (2024)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Weakly supervised object detection (WSup-OD) increases the usefulness and interpretability of image classification algorithms without requiring additional supervision. The successes of multiple instance learning in this task for natural images, however, do not translate well to medical images due to the very different characteristics of their objects (i.e. pathologies). In this work, we propose Weakly Supervised ROI Proposal Networks (WSRPN), a new method for generating bounding box proposals on the fly using a specialized region of interest-attention (ROI-attention) module. WSRPN integrates well with classic backbone-head classification algorithms and is end-to-end trainable with only image-label supervision. We experimentally demonstrate that our new method outperforms existing methods in the challenging task of disease localization in chest X-ray images. Code: https://anonymous.4open.science/r/WSRPN-DCA1.
Impact Factor
Scopus SNIP
Altmetric
8.900
3.322
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Biomedical Imaging ; Chest X-ray ; Image Edge Detection ; Location Awareness ; Object Detection ; Object Detection ; Pathology Detection ; Proposals ; Task Analysis ; Weak Supervision ; X-ray Imaging
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 0278-0062
e-ISSN 1558-254X
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort New York, NY [u.a.]
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Scopus ID 85200234451
Erfassungsdatum 2024-09-04