Assessing the performance of remaining time prediction methods for business processes.
IEEE Access 12, 130583-130601 (2024)
The prediction of the remaining time for business processes is a major task in predictive process monitoring (PPM). In the last years, various machine learning methods were introduced which reduced error levels steadily. However, the commonly applied metric for optimization and evaluation, the Mean Absolute Error (MAE), has limitations regarding its interpretability. In this work we introduce and evaluate the normalized Mean Absolute Error (nMAE) as an interpretable metric for model evaluation. It accounts for different kinds of label shifts, which are a special type of concept drift that can distort remaining time results. We investigate these concepts in a thorough benchmark study and use them to assess the current state of remaining time prediction for business processes. This includes the evaluation of four different baseline models, identifying the most accurate one. Furthermore, our study compares three different state-of-The-Art methods, namely XGBoost, DA-LSTM, and PGT-Net. In contrary to prior studies we find that there is no significant difference in the performance between these models. Additionally, using the nMAE as evaluation metric we find that these models do not perform reasonably well on a range of event logs. Initial ideas for this behaviour are discussed and consolidated along with other findings from the case study into a comprehensive list motivating future research directions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Business Process ; Graph Neural Network ; Lstm ; Machine Learning ; Predictive Process Monitoring ; Process Mining ; Remaining Time ; Xgboost
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
2169-3536
e-ISSN
2169-3536
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 12,
Heft: ,
Seiten: 130583-130601
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
IEEE
Verlagsort
445 Hoes Lane, Piscataway, Nj 08855-4141 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540008-001
Förderungen
German Research Foundation (DFG)
Copyright
Erfassungsdatum
2024-09-27