Eissa, T.* ; Huber, M.* ; Obermayer-Pietsch, B.* ; Linkohr, B. ; Peters, A. ; Fleischmann, F.* ; Zigman, M.*
CODI: Enhancing machine learning-based molecular profiling through contextual out-of-distribution integration.
PNAS Nexus 3:pgae449 (2024)
Molecular analytics increasingly utilize machine learning (ML) for predictive modeling based on data acquired through molecular profiling technologies. However, developing robust models that accurately capture physiological phenotypes is challenged by the dynamics inherent to biological systems, variability stemming from analytical procedures, and the resource-intensive nature of obtaining sufficiently representative datasets. Here, we propose and evaluate a new method: Contextual Out-of-Distribution Integration (CODI). Based on experimental observations, CODI generates synthetic data that integrate unrepresented sources of variation encountered in real-world applications into a given molecular fingerprint dataset. By augmenting a dataset with out-of-distribution variance, CODI enables an ML model to better generalize to samples beyond the seed training data, reducing the need for extensive experimental data collection. Using three independent longitudinal clinical studies and a case-control study, we demonstrate CODI's application to several classification tasks involving vibrational spectroscopy of human blood. We showcase our approach's ability to enable personalized fingerprinting for multiyear longitudinal molecular monitoring and enhance the robustness of trained ML models for improved disease detection. Our comparative analyses reveal that incorporating CODI into the classification workflow consistently leads to increased robustness against data variability and improved predictive accuracy.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Data Augmentation ; Machine Learning ; Molecular Analytics ; Out-of-distribution ; Variability Modeling; Metabolic Phenotypes; Spectroscopy; Hallmarks; Cancer
Keywords plus
ISSN (print) / ISBN
2752-6542
e-ISSN
2752-6542
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 3,
Heft: 10,
Seiten: ,
Artikelnummer: pgae449
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Great Clarendon St, Oxford Ox2 6dp, England
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
Förderungen
Styrian Business Promotion Agency (SFG)
Austrian Federal Ministry of Economics and Labour/the Federal Ministry of Economy, Family and Youth (BMWA/BMWFJ)
Austrian Research Fund, as a COMET K-project - Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT)
State of Bavaria
Helmholtz Zentrum Munchen-German Research Center for Environmental Health - German Federal Ministry of Education and Research (BMBF)
LMU Munich, Centre for Advanced Laser Applications (CALA)