FL-W3S: Cross-domain federated learning for weakly supervised semantic segmentation of white blood cells.
Int. J. Med. Inform. 195:105806 (2025)
BACKGROUND: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data. METHODS: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images. We perform model training on multiple clients with different data distributions to obtain a global aggregated model using only image-level class labels for semantic segmentation of white blood cells. A multi-class token transformer model learns the relationship between patch tokens and class tokens during collaborative learning and generates class-specific localization maps for mask predictions. To rectify the localization maps, we use patch-level pairwise affinity obtained from patch-to-patch transformer attention. RESULTS: We evaluate performance of the proposed semantic segmentation method on two different datasets of white blood cells from different domains. Our experimental results show that for two datasets, there is 2.56% and 1.39% increase in performance of the proposed method over existing state-of-the-art methods. CONCLUSION: The combination of federated learning for collaborative model training while preserving data privacy, alongside white blood cell segmentation techniques for precise cell identification, enhances diagnostic accuracy and personalized treatment strategies in clinical applications, particularly in hematology and pathology. More specifically, it involves isolating white blood cell from blood smear for further analysis such as automated blood cell counting, morphological analysis, cell classification, disease diagnosis and monitoring.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Federated Learning ; Transformer Attention ; Weakly Supervised Semantic Segmentation ; White Blood Cell
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1386-5056
e-ISSN
1872-8243
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 195,
Heft: ,
Seiten: ,
Artikelnummer: 105806
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Elsevier House, Brookvale Plaza, East Park Shannon, Co, Clare, 00000, Ireland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540007-001
Förderungen
European Union-Next Generation EU
(Component 2, Investment 1.5)
European Research Council (ERC) under the European Union's Horizon 2020 re-search and innovation program
Hightech Agenda Bayern
Copyright
Erfassungsdatum
2025-03-25