PuSH - Publikationsserver des Helmholtz Zentrums München

Rau, A.* ; Michel, L.J.* ; Reisert, M.* ; Rospleszcz, S.* ; Russe, M.F.* ; Schlesinger, S.* ; Peters, A. ; Bamberg, F.* ; Schlett, C.L.* ; Weiss, J.* ; Taron, J.*

Association between aortic imaging features and impaired glucose metabolism: A deep learning population phenotyping approach.

Acad. Radiol. 32, 2509-2516 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
RATIONALE AND OBJECTIVES: Type 2 diabetes is a known risk factor for vascular disease with an impact on the aorta. The aim of this study was to develop a deep learning framework for quantification of aortic phenotypes from magnetic resonance imaging (MRI) and to investigate the association between aortic features and impaired glucose metabolism beyond traditional cardiovascular (CV) risk factors. MATERIALS AND METHODS: This study used data from the prospective Cooperative Health Research in the Region of Augsburg (KORA) study to develop a deep learning framework for automatic quantification of aortic features (maximum aortic diameter, total volume, length, and width of the aortic arch) derived from MRI. Aortic features were compared between different states of glucose metabolism and tested for associations with impaired glucose metabolism adjusted for traditional CV risk factors (age, sex, height, weight, hypertension, smoking, and lipid panel). RESULTS: The deep learning framework yielded a high performance for aortic feature quantification with a Dice coefficient of 91.1±0.02. Of 381 participants (58% male, mean age 56 years), 231 (60.6%) had normal blood glucose, 97 (25.5%) had prediabetes, and 53 (13.9%) had diabetes. All aortic features showed a significant increase between different groups of glucose metabolism (p≤0.04). Total aortic length and total aortic volume were associated with impaired glucose metabolism (OR 0.85, 95%CI 0.74-0.96; p=0.01, and OR 0.99, 95%CI 0.98-0.99; p=0.02) independent of CV risk factors. CONCLUSION: Aortic features showed a glucose level dependent increase from normoglycemic individuals to those with prediabetes and diabetes. Total aortic length and volume were independently and inversely associated with impaired glucose metabolism beyond traditional CV risk factors.
Impact Factor
Scopus SNIP
Altmetric
3.900
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Aorta ; Diabetes ; Magnetic Resonance Imaging; Diagnosis; Burden; Kora
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 1076-6332
e-ISSN 1878-4046
Zeitschrift Academic radiology
Quellenangaben Band: 32, Heft: 5, Seiten: 2509-2516 Artikelnummer: , Supplement: ,
Verlag Elsevier Science Inc
Verlagsort Reston, VA
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-010
G-504090-001
Förderungen Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg
Scopus ID 85217629983
PubMed ID 39934079
Erfassungsdatum 2025-04-09