Rau, A.* ; Michel, L.J.* ; Reisert, M.* ; Rospleszcz, S.* ; Russe, M.F.* ; Schlesinger, S.* ; Peters, A. ; Bamberg, F.* ; Schlett, C.L.* ; Weiss, J.* ; Taron, J.*
Association between aortic imaging features and impaired glucose metabolism: A deep learning population phenotyping approach.
Acad. Radiol. 32, 2509-2516 (2025)
RATIONALE AND OBJECTIVES: Type 2 diabetes is a known risk factor for vascular disease with an impact on the aorta. The aim of this study was to develop a deep learning framework for quantification of aortic phenotypes from magnetic resonance imaging (MRI) and to investigate the association between aortic features and impaired glucose metabolism beyond traditional cardiovascular (CV) risk factors. MATERIALS AND METHODS: This study used data from the prospective Cooperative Health Research in the Region of Augsburg (KORA) study to develop a deep learning framework for automatic quantification of aortic features (maximum aortic diameter, total volume, length, and width of the aortic arch) derived from MRI. Aortic features were compared between different states of glucose metabolism and tested for associations with impaired glucose metabolism adjusted for traditional CV risk factors (age, sex, height, weight, hypertension, smoking, and lipid panel). RESULTS: The deep learning framework yielded a high performance for aortic feature quantification with a Dice coefficient of 91.1±0.02. Of 381 participants (58% male, mean age 56 years), 231 (60.6%) had normal blood glucose, 97 (25.5%) had prediabetes, and 53 (13.9%) had diabetes. All aortic features showed a significant increase between different groups of glucose metabolism (p≤0.04). Total aortic length and total aortic volume were associated with impaired glucose metabolism (OR 0.85, 95%CI 0.74-0.96; p=0.01, and OR 0.99, 95%CI 0.98-0.99; p=0.02) independent of CV risk factors. CONCLUSION: Aortic features showed a glucose level dependent increase from normoglycemic individuals to those with prediabetes and diabetes. Total aortic length and volume were independently and inversely associated with impaired glucose metabolism beyond traditional CV risk factors.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Aorta ; Diabetes ; Magnetic Resonance Imaging; Diagnosis; Burden; Kora
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1076-6332
e-ISSN
1878-4046
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 32,
Heft: 5,
Seiten: 2509-2516
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier Science Inc
Verlagsort
Reston, VA
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-010
G-504090-001
Förderungen
Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg
Copyright
Erfassungsdatum
2025-04-09