PuSH - Publikationsserver des Helmholtz Zentrums München

Linder, A.* ; Eggebrecht, T.* ; Linder, N.* ; Stange, R.* ; Schaudinn, A.* ; Blüher, M. ; Denecke, T.* ; Busse, H.*

Stand-alone MRI tool for semiautomatic volumetry of abdominal adipose compartments in patients with obesity.

Sci. Rep. 15:9354 (2025)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Abdominal adipose tissue (AT) amounts are increasingly considered as potential biomarkers for a variety of diseases and clinical questions, for instance, in diabetology, oncology or cardiovascular medicine. Despite the emergence of automated deep-learning methods for tissue quantification, interactive (supervised) segmentation tools will typically be used for model training. In comparison with CT-based approaches, MRI segmentation tools are more complex and less common. This work aims to validate a novel MRI-based tissue volumetry against a reference method in patients with (pre-) obesity. The new tool (segfatMR) was developed under a Matlab-based, open-source software framework and combines fast automatic pre-segmentation followed by manual (expert) corrections where needed. Analyses were performed retrospectively on a subset of clinical research MRI datasets (1.5 T Achieva XR, Philips Healthcare) and involved the segmentation of datasets from 20 patients (10 women/men) aged 25.1-63.1 (mean 48.5) years with BMIs between 28.3 and 58.8 (mean 36.8) kg/m2. Two independent expert readers analyzed the abdominopelvic data (30-40 slices, mean 35.8) with segfatMR and a widely used commercial tool (sliceOmatic). Coefficients of determination (R2), bias and limits of agreement (Bland Altman) were determined. Segmentation performance (R2 between methods) was excellent for both readers for SAT (> 0.99) and very high for VAT (around 0.90). The novel method was almost twice as fast as the reference standard - 25 and 19 s/slice (R1 and R2) vs. 40 and 34 s/slice. The presented semiautomatic segmentation tool enables a fast and accurate quantification of whole abdominopelvic adipose tissue volume in obesity studies. Use, adjustments and extensions of the MRI volumetry tool are facilitated by the open-source design on a standard PC.
Impact Factor
Scopus SNIP
Altmetric
3.900
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Adipose Tissue ; Mri ; Obesity ; Quantification ; Software Tool ; Subcutaneous Fat ; Visceral Fat; Automated Segmentation; Tissue; Image
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Zeitschrift Scientific Reports
Quellenangaben Band: 15, Heft: 1, Seiten: , Artikelnummer: 9354 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
POF Topic(s) 30201 - Metabolic Health
Forschungsfeld(er) Helmholtz Diabetes Center
PSP-Element(e) G-506501-001
Förderungen German Federal Ministry of Education and Research - BMBF, IFB Adiposity Diseases
PubMed ID 40102460
Erfassungsdatum 2025-05-09