Gene-based rare variant association tests (RVATs) are essential for uncovering disease mechanisms and identifying candidate drug targets, yet existing frameworks lack flexibility in integrating multiple variant annotations. Here, we introduce BayesRVAT, a Bayesian framework for RVAT which models variant effects using priors informed by multiple annotations. We show that BayesRVAT outperforms state-of-the-art burden test strategies in both simulations and an analysis of 12 blood traits from the UK Biobank.
Impact Factor
Scopus SNIP
Web of Science Times Cited
Scopus Cited By
Altmetric
0
0
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
PublikationstypArtikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Spracheenglisch
Veröffentlichungsjahr2025
Prepublished im Jahr 0
HGF-Berichtsjahr2025
ISSN (print) / ISBN0302-9743
e-ISSN1611-3349
ISBN
Bandtitel
KonferenztitelResearch in Computational Molecular Biology