möglich sobald bei der ZB eingereicht worden ist.
Principal curvatures estimation with applications to single cell data.
In: (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 6-11 April 2025, Hyderabad). 2025. DOI: 10.1109/ICASSP49660.2025.10888433 (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings)
The rapidly growing field of single-cell transcriptomic sequencing (scRNAseq) presents challenges for data analysis due to its massive datasets. A common method in manifold learning consists in hypothesizing that datasets lie on a lower dimensional manifold. This allows to study the geometry of point clouds by extracting meaningful descriptors like curvature. In this work, we will present Adaptive Local PCA (AdaL-PCA), a data-driven method for accurately estimating various notions of intrinsic curvature on data manifolds, in particular principal curvatures for surfaces. The model relies on local PCA to estimate the tangent spaces. The evaluation of AdaL-PCA on sampled surfaces shows state-of-the-art results. Combined with a PHATE embedding, the model applied to single-cell RNA sequencing data allows us to identify key variations in the cellular differentiation.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Gaussian Curvature ; Principal Curvature ; Principal Directions ; Single-cell
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1520-6149
Konferenztitel
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Konferzenzdatum
6-11 April 2025
Konferenzort
Hyderabad
Institut(e)
Human-Centered AI (HCA)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540003-001
Scopus ID
105003874535
Erfassungsdatum
2025-05-22