Berger, A.H.* ; Lux, L.* ; Shit, S.* ; Ezhov, I.* ; Kaissis, G. ; Menten, M.J.* ; Rueckert, D.* ; Paetzold, J.C.*
Cross-domain and cross-dimension learning for image-to-graph transformers.
In: (2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025, 28 February - 4 March 2025, Tucson). 10662 Los Vaqueros Circle, Po Box 3014, Los Alamitos, Ca 90720-1264 Usa: Ieee Computer Soc, 2025. 64-74 (Proceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025)
Direct image-to-graph transformation is a challenging task that involves solving object detection and relationship prediction in a single model. Due to this task's complexity, large training datasets are rare in many domains, making the training of deep-learning methods challenging. This data sparsity necessitates transfer learning strategies akin to the state-of-the-art in general computer vision. In this work, we introduce a set of methods enabling cross-domain and cross-dimension learning for image-to-graph trans-formers. We propose (1) a regularized edge sampling loss to effectively learn object relations in multiple domains with different numbers of edges, (2) a domain adaptation frame-work for image-to-graph transformers aligning image- and graph-level features from different domains, and (3) a projection function that allows using 2D data for training 3D transformers. We demonstrate our method's utility in cross-domain and cross-dimension experiments, where we utilize labeled data from 2D road networks for simultaneous learning in vastly different target domains. Our method consistently outperforms standard transfer learning and self-supervised pretraining on challenging benchmarks, such as retinal or whole-brain vessel graph extraction.11Code: github.com/AlexanderHBerger/cross-dim_i2g
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Domain Adaptation ; Image-to-graph ; Transfer Learning
Keywords plus
ISSN (print) / ISBN
[9798331510831]
e-ISSN
ISBN
Bandtitel
Konferenztitel
2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025
Konferzenzdatum
28 February - 4 March 2025
Konferenzort
Tucson
Konferenzband
Quellenangaben
Band: ,
Heft: ,
Seiten: 64-74
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Ieee Computer Soc
Verlagsort
10662 Los Vaqueros Circle, Po Box 3014, Los Alamitos, Ca 90720-1264 Usa
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Bavarian Collaborative Research Project PRIPREKI of the Free State of Bavaria Funding Programme "Artificial Intelligence - Data Science" - Konrad Zuse School of Excellence in Reliable AI (relAI)
Medical Informatics Initiative
German Ministry of Education and Research
Stiftung der Deutschen Wirtschaft - German Research Foundation
Copyright