Agreement of image quality metrics with radiological evaluation in the presence of motion artifacts.
    
    
        
    
    
        
        Magn. Reson. Mater. Phys. Biol. Med., DOI: 10.1007/s10334-025-01266-y (2025)
    
    
    
		
		
			
				OBJECTIVE: Reliable image quality assessment is crucial for evaluating new motion correction methods for magnetic resonance imaging. We compare the performance of common reference-based and reference-free image quality metrics on unique datasets with real motion artifacts, and analyze the metrics' robustness to typical pre-processing techniques. MATERIALS AND METHODS: We compared five reference-based and five reference-free metrics on brain data acquired with and without intentional motion (2D and 3D sequences). The metrics were recalculated seven times with varying pre-processing steps. Spearman correlation coefficients were computed to assess the relationship between image quality metrics and radiological evaluation. RESULTS: All reference-based metrics showed strong correlation with observer assessments. Among reference-free metrics, Average Edge Strength offers the most promising results, as it consistently displayed stronger correlations across all sequences compared to the other reference-free metrics. The strongest correlation was achieved with percentile normalization and restricting the metric values to the skull-stripped brain region. In contrast, correlations were weaker when not applying any brain mask and using min-max or no normalization. DISCUSSION: Reference-based metrics reliably correlate with radiological evaluation across different sequences and datasets. Pre-processing significantly influences correlation values. Future research should focus on refining pre-processing techniques and exploring approaches for automated image quality evaluation.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Artifacts ; Data Quality ; Magnetic Resonance Imaging ; Metrics ; Motion; Robust
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2025
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2025
    
 
    
    
        ISSN (print) / ISBN
        0968-5243
    
 
    
        e-ISSN
        1352-8661
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band:  
	    Heft:  
	    Seiten:  
	    Artikelnummer:  
	    Supplement:  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Springer
        
 
        
            Verlagsort
            One New York Plaza, Suite 4600, New York, Ny, United States
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Machine Learning in Biomed Imaging (IML)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-507100-001
    
 
    
        Förderungen
        Elsass Fonden
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2025-06-25