Nand, V.* ; Qi, Z.* ; Ma, L.* ; Helmers, M.J.* ; Madramootoo, C.A.* ; Smith, W.N.* ; Zhang, T.* ; Weber, T.K.D.* ; Pattey, E.* ; Li, Z.* ; Wang, J.* ; Jin, V.L.* ; Jiang, Q.* ; Tenuta, M.* ; Trout, T.J.* ; Cheng, H.* ; Harmel, R.D.* ; Kimball, B.A.* ; Thorp, K.R.* ; Boote, K.J.* ; Stöckle, C.* ; Suyker, A.E.* ; Evett, S.R.* ; Brauer, D.K.* ; Coyle, G.G.* ; Copeland, K.S.* ; Marek, G.W.* ; Colaizzi, P.D.* ; Acutis, M.* ; Alimagham, S.M.* ; Archontoulis, S.* ; Babacar, F.* ; Barcza, Z.* ; Basso, B.* ; Bertuzzi, P.* ; Constantin, J.* ; De Antoni Migliorati, M.* ; Dumont, B.* ; Durand, J.L.* ; Fodor, N.* ; Gaiser, T.* ; Garofalo, P.* ; Gayler, S.* ; Giglio, L.* ; Grant, R.* ; Guan, K.* ; Hoogenboom, G.* ; Kim, S.H.* ; Kisekka, I.* ; Lizaso, J.* ; Masia, S.* ; Meng, H.* ; Mereu, V.* ; Mukhtar, A.* ; Perego, A.* ; Peng, B.* ; Priesack, E. ; Shelia, V.* ; Snyder, R.* ; Soltani, A.* ; Spano, D.* ; Srivastava, A.* ; Thomson, A.* ; Timlin, D.* ; Trabucco, A.* ; Webber, H.* ; Willaume, M.* ; Williams, K.* ; van der Laan, M.* ; Ventrella, D.* ; Viswanathan, M.* ; Xu, X.* ; Zhou, W.*
Evaluation of multimodel averaging approaches for ensembling evapotranspiration and yield simulations from maize models.
J. Hydrol. 661:133631 (2025)
Combining multi-model simulations can reduce the uncertainty in model structure and increase the accuracy of agricultural systems modeling results. This improvement is essential for supporting better decision making in irrigation planning and climate change adaptation strategies. Besides the commonly used arithmetic mean and median, many multi-model averaging approaches (MAA), widely examined in groundwater and hydrological modeling, but these additional MAA have not been examined in agricultural system modeling to improve the simulation accuracy. Therefore, the objective of this study is to evaluate the performance of seven MAA: two equal weighted approaches (Simple Model Averaging (SMA) and Median) and five weighted approaches (Inverse Ranking (IR), Bates and Granger Averaging (BGA), and Granger Ramanathan A, B, and C (GRA, GRB, and GRC)) in combining results of multiple agricultural system models. The Granger Ramanathan methods differ in their constraints: GRA employs conventional least squares, GRB requires non-negative weights that total to one, and GRC reduces absolute errors for robustness against outliers. The evaluation was conducted using maize yield and daily ETa simulations for both blind (uncalibrated) and calibrated phases of data from two groups of maize sites (Group A and Group B) across North America. The modeling results from the blind and calibrated phases were combined for all maize models and group maize models. Overall, all MAA performed better than individual crop models for blind and calibration phases. Specifically, the GRB model averaging method provided the closest match to measured values for daily ETa, while GRA was the most accurate for maize yield in most cases across all sites and phases. GRB improved daily ETa estimation over the median by an average of 4 % and 8.5 % in terms of RRMSE, while GRA enhanced maize yield estimation over the median by 7.5 % and 10.9 % for Group A and Group B sites, respectively. Notably, the improvement was greater in the blind phase for both groups of maize sites. An ensemble of group maize models with varied structures performed nearly as well as an ensemble of all maize models in simulating daily ETa and yield for Group A and Group B sites. Based on the results, we recommend GRA for crop yield and GRB for ETa simulations for maize, but both methods require observed yield and ETa data for their application; however, in the absence of observed data, we recommend the SMA method as it performs better than the median. However, the performance of these MAA methods may differ for other crops (e.g., soybean, wheat, canola, potato, alfalfa) or regions, and it should be evaluated in future studies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Evapotranspiration ; Maize ; Multi-model Averaging Approaches ; Multiple Crop Models ; Yield; Combination; Crop
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0022-1694
e-ISSN
1879-2707
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 661,
Heft: ,
Seiten: ,
Artikelnummer: 133631
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504912-001
Förderungen
Natural Sciences and Engineering Research Council of Canada (NSERC)
McGill University
Ministry of Social Justice and Empowerment, Government of India
Copyright
Erfassungsdatum
2025-06-17